IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924019895.html
   My bibliography  Save this article

A decentralized optimization approach for scalable agent-based energy dispatch and congestion management

Author

Listed:
  • Kilthau, Maximilian
  • Henkel, Vincent
  • Wagner, Lukas Peter
  • Gehlhoff, Felix
  • Fay, Alexander

Abstract

Due to the increasing number of renewable energy sources and the growing number of energy consumers such as electric vehicles and heat pumps, distribution system operators face growing challenges in managing the grid. A promising direction for future grid management is the decentralization of computing power to individual agents within the distribution network. In the proposed model, each household is equipped with an agent responsible for optimizing energy flow and negotiating surplus energy with neighbouring agents. However, the delivery of energy between households could lead to grid congestion, because the current distribution grid structure is not designed to handle the higher energy consumption of the increasing number of electrical consumers. This paper presents an agent-based approach for efficient energy dispatch and grid congestion management. The developed system operates in a decentralized manner, without the need for a central coordination unit. To incentivize the participation of prosumers in such decentralized approaches, a market-based energy dispatch is implemented using a game-theoretic method. In addition, to unbundle market and control related activities, the operation of grid congestion management is separated from market-based energy dispatch and implemented using the Alternating Method of Multipliers (ADMM). The feasibility and effectiveness of this approach is demonstrated through simulations involving 5 prosumers, as well as simulations on IEEE 33 and IEEE 119 bus networks, showing its potential to address the complexities of current and future grid management challenges.

Suggested Citation

  • Kilthau, Maximilian & Henkel, Vincent & Wagner, Lukas Peter & Gehlhoff, Felix & Fay, Alexander, 2025. "A decentralized optimization approach for scalable agent-based energy dispatch and congestion management," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019895
    DOI: 10.1016/j.apenergy.2024.124606
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924019895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Esmat, Ayman & de Vos, Martijn & Ghiassi-Farrokhfal, Yashar & Palensky, Peter & Epema, Dick, 2021. "A novel decentralized platform for peer-to-peer energy trading market with blockchain technology," Applied Energy, Elsevier, vol. 282(PA).
    2. Zhang, Bidan & Du, Yang & Chen, Xiaoyang & Lim, Eng Gee & Jiang, Lin & Yan, Ke, 2022. "A novel adaptive penalty mechanism for Peer-to-Peer energy trading," Applied Energy, Elsevier, vol. 327(C).
    3. Tarashandeh, Nader & Karimi, Ali, 2024. "Peer-to-peer energy trading under distribution network constraints with preserving independent nature of agents," Applied Energy, Elsevier, vol. 355(C).
    4. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    5. Zhang, Ying & Robu, Valentin & Cremers, Sho & Norbu, Sonam & Couraud, Benoit & Andoni, Merlinda & Flynn, David & Poor, H. Vincent, 2024. "Modelling the formation of peer-to-peer trading coalitions and prosumer participation incentives in transactive energy communities," Applied Energy, Elsevier, vol. 355(C).
    6. de la Torre, S. & Aguado, J.A. & Sauma, E., 2023. "Optimal scheduling of ancillary services provided by an electric vehicle aggregator," Energy, Elsevier, vol. 265(C).
    7. Vincent Henkel & Lukas Peter Wagner & Felix Gehlhoff & Alexander Fay, 2024. "Combination of Site-Wide and Real-Time Optimization for the Control of Systems of Electrolyzers," Energies, MDPI, vol. 17(17), pages 1-17, September.
    8. Kim, Icksung & Kim, Woohyun, 2023. "Application of market-based control with thermal energy storage system for demand limiting and real-time pricing control," Energy, Elsevier, vol. 263(PA).
    9. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    10. Aghdam, Farid Hamzeh & Mudiyanselage, Manthila Wijesooriya & Mohammadi-Ivatloo, Behnam & Marzband, Mousa, 2023. "Optimal scheduling of multi-energy type virtual energy storage system in reconfigurable distribution networks for congestion management," Applied Energy, Elsevier, vol. 333(C).
    11. Zhou, Yue & Wu, Jianzhong & Song, Guanyu & Long, Chao, 2020. "Framework design and optimal bidding strategy for ancillary service provision from a peer-to-peer energy trading community," Applied Energy, Elsevier, vol. 278(C).
    12. Song, Meng & Gao, Ciwei & Ma, Sisi & Meng, Jing & Chen, Kang, 2022. "Distributed scheduling of HVACs based on transactive energy and ADMM," Applied Energy, Elsevier, vol. 325(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    2. Gourisetti, Sri Nikhil Gupta & Sebastian-Cardenas, D. Jonathan & Bhattarai, Bishnu & Wang, Peng & Widergren, Steve & Borkum, Mark & Randall, Alysha, 2021. "Blockchain smart contract reference framework and program logic architecture for transactive energy systems," Applied Energy, Elsevier, vol. 304(C).
    3. Adisorn Leelasantitham & Thammavich Wongsamerchue & Yod Sukamongkol, 2024. "Economic Pricing in Peer-to-Peer Electrical Trading for a Sustainable Electricity Supply Chain Industry in Thailand," Energies, MDPI, vol. 17(5), pages 1-19, March.
    4. Xia, Yuanxing & Xu, Qingshan & Li, Fangxing, 2023. "Grid-friendly pricing mechanism for peer-to-peer energy sharing market diffusion in communities," Applied Energy, Elsevier, vol. 334(C).
    5. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Kisal Kawshika Gunawardana Hathamune Liyanage & Shama Naz Islam, 2024. "Comparative Analysis of Market Clearing Mechanisms for Peer-to-Peer Energy Market Based on Double Auction," Energies, MDPI, vol. 17(22), pages 1-17, November.
    7. Doumen, Sjoerd C. & Nguyen, Phuong & Kok, Koen, 2022. "Challenges for large-scale Local Electricity Market implementation reviewed from the stakeholder perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    8. Lyu, Cheng & Jia, Youwei & Xu, Zhao, 2021. "Fully decentralized peer-to-peer energy sharing framework for smart buildings with local battery system and aggregated electric vehicles," Applied Energy, Elsevier, vol. 299(C).
    9. Sulman Shahzad & Muhammad Abbas Abbasi & Hassan Ali & Muhammad Iqbal & Rania Munir & Heybet Kilic, 2023. "Possibilities, Challenges, and Future Opportunities of Microgrids: A Review," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    10. Lutfu Saribulut & Gorkem Ok & Arman Ameen, 2023. "A Case Study on National Electricity Blackout of Turkey," Energies, MDPI, vol. 16(11), pages 1-20, May.
    11. Zuobin Ying & Wusong Lan & Chen Deng & Lu Liu & Ximeng Liu, 2023. "DVIT—A Decentralized Virtual Items Trading Forum with Reputation System," Mathematics, MDPI, vol. 11(2), pages 1-23, January.
    12. Ernest Barceló & Katarina Dimić-Mišić & Monir Imani & Vesna Spasojević Brkić & Michael Hummel & Patrick Gane, 2023. "Regulatory Paradigm and Challenge for Blockchain Integration of Decentralized Systems: Example—Renewable Energy Grids," Sustainability, MDPI, vol. 15(3), pages 1-27, January.
    13. Izabela Zoltowska, 2024. "Risk Preferences of EV Fleet Aggregators in Day-Ahead Market Bidding: Mean-CVaR Linear Programming Model," Energies, MDPI, vol. 18(1), pages 1-19, December.
    14. Wang, Qi & Huang, Chunyi & Wang, Chengmin & Li, Kangping & Xie, Ning, 2024. "Joint optimization of bidding and pricing strategy for electric vehicle aggregator considering multi-agent interactions," Applied Energy, Elsevier, vol. 360(C).
    15. Yahia Baashar & Gamal Alkawsi & Ammar Ahmed Alkahtani & Wahidah Hashim & Rina Azlin Razali & Sieh Kiong Tiong, 2021. "Toward Blockchain Technology in the Energy Environment," Sustainability, MDPI, vol. 13(16), pages 1-20, August.
    16. Cailian Gu & Yibo Wang & Weisheng Wang & Yang Gao, 2023. "Research on Load State Sensing and Early Warning Method of Distribution Network under High Penetration Distributed Generation Access," Energies, MDPI, vol. 16(7), pages 1-15, March.
    17. Sara Khan & Uzma Amin & Ahmed Abu-Siada, 2024. "P2P Energy Trading of EVs Using Blockchain Technology in Centralized and Decentralized Networks: A Review," Energies, MDPI, vol. 17(9), pages 1-17, April.
    18. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    19. Yaçine Merrad & Mohamed Hadi Habaebi & Siti Fauziah Toha & Md. Rafiqul Islam & Teddy Surya Gunawan & Mokhtaria Mesri, 2022. "Fully Decentralized, Cost-Effective Energy Demand Response Management System with a Smart Contracts-Based Optimal Power Flow Solution for Smart Grids," Energies, MDPI, vol. 15(12), pages 1-27, June.
    20. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924019895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.