IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v262y2023ipas0360544222023489.html
   My bibliography  Save this article

A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir

Author

Listed:
  • Aliyu, Musa D.
  • Finkbeiner, Thomas
  • Chen, Hua-Peng
  • Archer, Rosalind A.

Abstract

During heat extraction in enhanced geothermal system (EGS) reservoirs, thermal contraction is induced by cold fluid injection, resulting in thermoelastic deformation. The induced thermoelasticity can alter rock properties, including their fracture aperture and permeability; therefore, the thermoelastic effect is crucial in understanding EGS reservoir behaviour. Based on coupled thermo-hydro-mechanical (THM) processes extended in COMSOL Multiphysics to include the thermoelastic effect, this paper presents a three-dimensional (3D) numerical model of an EGS reservoir with a multiple planar fracture system to investigate the influence of thermoelasticity on reservoir thermal performance. The model is used to perform an in-depth analysis to determine the rate at which the thermoelastic effect develops during heat extraction in relation to a baseline THM model without thermoelasticity. After demonstrating that thermoelasticity influences the thermal performance of EGS reservoirs, the study is further extended to investigate the effect of injection temperature and Young's modulus on fracture aperture opening, reservoir impedance, thermal front propagation, and flow rate. The results show that thermoelasticity affects the long-term thermal performance of EGS reservoirs by reducing the energy extraction rate due to increased flow pathways. Due to high reservoir impedance, the thermoelastic effect appears to cause thermal short circuits (growth of rapidly cooling paths with high flow rates). The results suggest that thermoelasticity has a significant impact on system thermal performance for deep EGS reservoirs.

Suggested Citation

  • Aliyu, Musa D. & Finkbeiner, Thomas & Chen, Hua-Peng & Archer, Rosalind A., 2023. "A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir," Energy, Elsevier, vol. 262(PA).
  • Handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023489
    DOI: 10.1016/j.energy.2022.125466
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222023489
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125466?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature," Energy, Elsevier, vol. 129(C), pages 101-113.
    2. Zhang, Wei & Wang, Chunguang & Guo, Tiankui & He, Jiayuan & Zhang, Le & Chen, Shaojie & Qu, Zhanqing, 2021. "Study on the cracking mechanism of hydraulic and supercritical CO2 fracturing in hot dry rock under thermal stress," Energy, Elsevier, vol. 221(C).
    3. Liu, Xiaoqiang & Qu, Zhanqing & Guo, Tiankui & Sun, Ying & Rabiei, Minou & Liao, Hualin, 2021. "A coupled thermo-hydrologic-mechanical (THM) model to study the impact of hydrate phase transition on reservoir damage," Energy, Elsevier, vol. 216(C).
    4. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    5. Aliyu, Musa D. & Chen, Hua-Peng, 2018. "Enhanced geothermal system modelling with multiple pore media: Thermo-hydraulic coupled processes," Energy, Elsevier, vol. 165(PA), pages 931-948.
    6. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    7. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    8. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bo & Guo, Tiankui & Qu, Zhanqing & Wang, Jiwei & Chen, Ming & Liu, Xiaoqiang, 2023. "Numerical simulation of fracture propagation and production performance in a fractured geothermal reservoir using a 2D FEM-based THMD coupling model," Energy, Elsevier, vol. 273(C).
    2. Gudala, Manojkumar & Yan, Bicheng & Tariq, Zeeshan & Zhang, Fengshou & Sun, Shuyu, 2024. "Doublet huff and puff: A new technology for efficient geological CO2 sequestration and stable geothermal recovery," Applied Energy, Elsevier, vol. 367(C).
    3. Xu, Fuqiang & Shi, Yu & Song, Xianzhi & Wu, Wei & Song, Guofeng & Li, Shuang, 2024. "Experimental characterization of damage during geothermal production of hot dry rocks: Comprehensive effects of the damage-elastic deformation on conductivity evolution," Energy, Elsevier, vol. 294(C).
    4. Ji, Jiayan & Song, Xianzhi & Yi, Junlin & Song, Guofeng & Wang, Gaosheng, 2024. "Effects of pore water-rock reaction on heat extraction from the karst geothermal reservoirs: Based on the dual media model," Energy, Elsevier, vol. 293(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jiansong & Liu, Yongsheng & Lv, Jianguo & Gao, Wenlong, 2024. "The flow and heat transfer characteristics of supercritical mixed-phase CO2 and N2 in a 3D self-affine rough fracture," Energy, Elsevier, vol. 303(C).
    2. Liu, Guihong & Wang, Guiling & Zhao, Zhihong & Ma, Feng, 2020. "A new well pattern of cluster-layout for deep geothermal reservoirs: Case study from the Dezhou geothermal field, China," Renewable Energy, Elsevier, vol. 155(C), pages 484-499.
    3. Wang, Jiacheng & Zhao, Zhihong & Liu, Guihong & Xu, Haoran, 2022. "A robust optimization approach of well placement for doublet in heterogeneous geothermal reservoirs using random forest technique and genetic algorithm," Energy, Elsevier, vol. 254(PC).
    4. Aliyu, Musa D. & Archer, Rosalind A., 2021. "Numerical simulation of multifracture HDR geothermal reservoirs," Renewable Energy, Elsevier, vol. 164(C), pages 541-555.
    5. Hsieh, Jui-Ching & Li, Yi-Chen & Lin, Yu-Cheng & Yeh, Tzu-Chuan, 2024. "Off-design performance and economic analysis in coupled binary cycle with geothermal reservoir and turbo-expander," Energy, Elsevier, vol. 305(C).
    6. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    7. Mahmoodpour, Saeed & Singh, Mrityunjay & Turan, Aysegul & Bär, Kristian & Sass, Ingo, 2022. "Simulations and global sensitivity analysis of the thermo-hydraulic-mechanical processes in a fractured geothermal reservoir," Energy, Elsevier, vol. 247(C).
    8. Qu, Hai & Li, Chengying & Chen, Xiangjun & Liu, Xu & Guo, Ruichang & Liu, Ying, 2023. "LN cooling on mechanical properties and fracture characteristics of hot dry granites involving ANN prediction," Renewable Energy, Elsevier, vol. 216(C).
    9. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Wang, Ming, 2023. "Heat extraction performance evaluation of U-shaped well geothermal production system under different well-layout parameters and engineering schemes," Renewable Energy, Elsevier, vol. 203(C), pages 473-484.
    10. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    11. Li, Yuwei & Peng, Genbo & Du, Tong & Jiang, Liangliang & Kong, Xiang-Zhao, 2024. "Advancing fractured geothermal system modeling with artificial neural network and bidirectional gated recurrent unit," Applied Energy, Elsevier, vol. 372(C).
    12. Xue, Zhenqian & Zhang, Kai & Zhang, Chi & Ma, Haoming & Chen, Zhangxin, 2023. "Comparative data-driven enhanced geothermal systems forecasting models: A case study of Qiabuqia field in China," Energy, Elsevier, vol. 280(C).
    13. Guo, Tiankui & Zhang, Yuelong & He, Jiayuan & Gong, Facheng & Chen, Ming & Liu, Xiaoqiang, 2021. "Research on geothermal development model of abandoned high temperature oil reservoir in North China oilfield," Renewable Energy, Elsevier, vol. 177(C), pages 1-12.
    14. Liu, Gang & Zhou, Chunwei & Rao, Zhenghua & Liao, Shengming, 2021. "Impacts of fracture network geometries on numerical simulation and performance prediction of enhanced geothermal systems," Renewable Energy, Elsevier, vol. 171(C), pages 492-504.
    15. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    16. Zhang, Yanjun & Ma, Yueqiang & Hu, Zhongjun & Lei, Honglei & Bai, Lin & Lei, Zhihong & Zhang, Qian, 2019. "An experimental investigation into the characteristics of hydraulic fracturing and fracture permeability after hydraulic fracturing in granite," Renewable Energy, Elsevier, vol. 140(C), pages 615-624.
    17. Zhang, Wei & Qu, Zhanqing & Guo, Tiankui & Wang, Zhiyuan, 2019. "Study of the enhanced geothermal system (EGS) heat mining from variably fractured hot dry rock under thermal stress," Renewable Energy, Elsevier, vol. 143(C), pages 855-871.
    18. Chen, Yuedu & Liang, Weiguo, 2024. "The assessment of geothermal extraction efficiency for unstable alternation operation through thermal-hydro mechanical coupling simulations," Renewable Energy, Elsevier, vol. 232(C).
    19. Xu, Fuqiang & Song, Xianzhi & Song, Guofeng & Ji, Jiayan & Song, Zihao & Shi, Yu & Lv, Zehao, 2023. "Numerical studies on heat extraction evaluation and multi-objective optimization of abandoned oil well patterns in intermittent operation mode," Energy, Elsevier, vol. 269(C).
    20. Gao, Xiang & Li, Tailu, 2022. "Synergetic characteristics of three-dimensional transient heat transfer in geothermal reservoir combined with power conversion for enhanced geothermal system," Renewable Energy, Elsevier, vol. 192(C), pages 216-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:262:y:2023:i:pa:s0360544222023489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.