IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v293y2024ics0360544224004237.html
   My bibliography  Save this article

Effects of pore water-rock reaction on heat extraction from the karst geothermal reservoirs: Based on the dual media model

Author

Listed:
  • Ji, Jiayan
  • Song, Xianzhi
  • Yi, Junlin
  • Song, Guofeng
  • Wang, Gaosheng

Abstract

Fractures and caves are the main flow and storage channels for the karst geothermal reservoirs, and the water-rock reaction within them significantly affects the thermal performance. Most previous studies concentrated on the fractures, disregarding the impact of the pore water-rock reaction. The objective of this study is to explore the importance of pore water-rock reactions and identify the influence of various parameters when considering pore and fracture water-rock reactions. A 3D thermal-hydraulic-chemical coupling model considering dual media of pores and fractures was developed. The importance of pore water-rock reactions is demonstrated, and quantitatively characterize the effect of injection temperature (Tin), injection rate (Qin), injection concentration (cin), and ratio of the reaction-specific surface area between pore and fracture (Ap/Af) on the thermal performance. Results indicate that the pore water-rock reaction drastically affects the hydraulic conductivity and pressure difference, even leading to an opposite trend. The influence of water-rock reaction in pores on fracture deformation is regulated by Ap/Af, which augments with Ap/Af. The relative contribution of Ap/Af to production temperature, net thermal power, pressure difference, and hydraulic conductivity are 12.8%, 4.1%, 6.8%, and 13.7%, respectively. This study provides a significant guide for accurate production prediction and exploitation of karst-based geothermal reservoirs.

Suggested Citation

  • Ji, Jiayan & Song, Xianzhi & Yi, Junlin & Song, Guofeng & Wang, Gaosheng, 2024. "Effects of pore water-rock reaction on heat extraction from the karst geothermal reservoirs: Based on the dual media model," Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004237
    DOI: 10.1016/j.energy.2024.130651
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224004237
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130651?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Wen-Long & Wang, Chang-Long & Nian, Yong-Le & Han, Bing-Bing & Liu, Jian, 2016. "Analysis of influencing factors of heat extraction from enhanced geothermal systems considering water losses," Energy, Elsevier, vol. 115(P1), pages 274-288.
    2. Song, Guofeng & Song, Xianzhi & Ji, Jiayan & Wu, Xiaoguang & Li, Gensheng & Xu, Fuqiang & Shi, Yu & Wang, Gaosheng, 2022. "Evolution of fracture aperture and thermal productivity influenced by chemical reaction in enhanced geothermal system," Renewable Energy, Elsevier, vol. 186(C), pages 126-142.
    3. Ji, Jiayan & Song, Xianzhi & Song, Guofeng & Xu, Fuqiang & Shi, Yu & Lv, Zehao & Li, Shuang & Yi, Junlin, 2023. "Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling," Energy, Elsevier, vol. 269(C).
    4. Aliyu, Musa D. & Finkbeiner, Thomas & Chen, Hua-Peng & Archer, Rosalind A., 2023. "A three-dimensional investigation of the thermoelastic effect in an enhanced geothermal system reservoir," Energy, Elsevier, vol. 262(PA).
    5. Ji, Jiayan & Song, Xianzhi & Li, Shuang & Xu, Fuqiang & Song, Guofeng & Shi, Yu & Yi, Junlin, 2023. "Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model," Energy, Elsevier, vol. 282(C).
    6. Hou, Jianchao & Cao, Mengchao & Liu, Pingkuo, 2018. "Development and utilization of geothermal energy in China: Current practices and future strategies," Renewable Energy, Elsevier, vol. 125(C), pages 401-412.
    7. Zhu, Jialing & Hu, Kaiyong & Lu, Xinli & Huang, Xiaoxue & Liu, Ketao & Wu, Xiujie, 2015. "A review of geothermal energy resources, development, and applications in China: Current status and prospects," Energy, Elsevier, vol. 93(P1), pages 466-483.
    8. Shi, Yu & Xu, Fuqiang & Song, Xianzhi & Wang, Gaosheng & Zuo, Yinhui & Li, Xiaojiang & Ji, Jiayan, 2023. "Rock damage evolution in the production process of the enhanced geothermal systems considering thermal-hydrological-mechanical and damage (THM-D)," Energy, Elsevier, vol. 285(C).
    9. Song, Xianzhi & Shi, Yu & Li, Gensheng & Yang, Ruiyue & Wang, Gaosheng & Zheng, Rui & Li, Jiacheng & Lyu, Zehao, 2018. "Numerical simulation of heat extraction performance in enhanced geothermal system with multilateral wells," Applied Energy, Elsevier, vol. 218(C), pages 325-337.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    2. Qiao, Mingzheng & Jing, Zefeng & Feng, Chenchen & Li, Minghui & Chen, Cheng & Zou, Xupeng & Zhou, Yujuan, 2024. "Review on heat extraction systems of hot dry rock: Classifications, benefits, limitations, research status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    3. Pan, Shu-Yuan & Gao, Mengyao & Shah, Kinjal J. & Zheng, Jianming & Pei, Si-Lu & Chiang, Pen-Chi, 2019. "Establishment of enhanced geothermal energy utilization plans: Barriers and strategies," Renewable Energy, Elsevier, vol. 132(C), pages 19-32.
    4. Ji, Jiayan & Song, Xianzhi & Li, Shuang & Xu, Fuqiang & Song, Guofeng & Shi, Yu & Yi, Junlin, 2023. "Study on the effect of fracture morphology on fracture deformation based on the thermal-hydraulic-chemical-deformation coupling model," Energy, Elsevier, vol. 282(C).
    5. Chen, Cihai & Deng, Yaping & Ma, Haichun & Kang, Xueyuan & Ma, Lei & Qian, Jiazhong, 2024. "Deep learning-based inversion framework by assimilating hydrogeological and geophysical data for an enhanced geothermal system characterization and thermal performance prediction," Energy, Elsevier, vol. 302(C).
    6. Hu, Xincheng & Banks, Jonathan & Guo, Yunting & Liu, Wei Victor, 2022. "Utilizing geothermal energy from enhanced geothermal systems as a heat source for oil sands separation: A numerical evaluation," Energy, Elsevier, vol. 238(PA).
    7. Shi, Yu & Song, Xianzhi & Wang, Gaosheng & McLennan, John & Forbes, Bryan & Li, Xiaojiang & Li, Jiacheng, 2019. "Study on wellbore fluid flow and heat transfer of a multilateral-well CO2 enhanced geothermal system," Applied Energy, Elsevier, vol. 249(C), pages 14-27.
    8. Yibo Wang & Lijuan Wang & Yang Bai & Zhuting Wang & Jie Hu & Di Hu & Yaqi Wang & Shengbiao Hu, 2021. "Assessment of Geothermal Resources in the North Jiangsu Basin, East China, Using Monte Carlo Simulation," Energies, MDPI, vol. 14(2), pages 1-17, January.
    9. Chen, Yun & Ma, Guowei & Wang, Huidong & Li, Tuo & Wang, Yang & Sun, Zizheng, 2020. "Optimizing heat mining strategies in a fractured geothermal reservoir considering fracture deformation effects," Renewable Energy, Elsevier, vol. 148(C), pages 326-337.
    10. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Song, Xianzhi & Wang, Gaosheng & Shi, Yu & Li, Ruixia & Xu, Zhengming & Zheng, Rui & Wang, Yu & Li, Jiacheng, 2018. "Numerical analysis of heat extraction performance of a deep coaxial borehole heat exchanger geothermal system," Energy, Elsevier, vol. 164(C), pages 1298-1310.
    12. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu, 2020. "Study on the effect of well layout schemes and fracture parameters on the heat extraction performance of enhanced geothermal system in fractured reservoir," Energy, Elsevier, vol. 202(C).
    13. Zinsalo, Joël M. & Lamarche, Louis & Raymond, Jasmin, 2022. "Performance analysis and working fluid selection of an Organic Rankine Cycle Power Plant coupled to an Enhanced Geothermal System," Energy, Elsevier, vol. 245(C).
    14. Xu, Fuqiang & Shi, Yu & Song, Xianzhi & Wu, Wei & Song, Guofeng & Li, Shuang, 2024. "Experimental characterization of damage during geothermal production of hot dry rocks: Comprehensive effects of the damage-elastic deformation on conductivity evolution," Energy, Elsevier, vol. 294(C).
    15. Zhou, Luming & Zhu, Zhende & Xie, Xinghua & Hu, Yunjin, 2022. "Coupled thermal–hydraulic–mechanical model for an enhanced geothermal system and numerical analysis of its heat mining performance," Renewable Energy, Elsevier, vol. 181(C), pages 1440-1458.
    16. Ma, Yuanyuan & Li, Shibin & Zhang, Ligang & Liu, Songze & Liu, Zhaoyi & Li, Hao & Shi, Erxiu & Zhang, Haijun, 2020. "Numerical simulation study on the heat extraction performance of multi-well injection enhanced geothermal system," Renewable Energy, Elsevier, vol. 151(C), pages 782-795.
    17. Li, Shijie & Liu, Jie & Huang, Wanying & Zhang, Chenghang, 2024. "Numerical simulation of the thermo-hydro-chemical coupling in enhanced geothermal systems: Impact of SiO2 dissolution/precipitation in matrix and fractures," Energy, Elsevier, vol. 290(C).
    18. Zhang, Chao & Jiang, Guangzheng & Jia, Xiaofeng & Li, Shengtao & Zhang, Shengsheng & Hu, Di & Hu, Shengbiao & Wang, Yibo, 2019. "Parametric study of the production performance of an enhanced geothermal system: A case study at the Qiabuqia geothermal area, northeast Tibetan plateau," Renewable Energy, Elsevier, vol. 132(C), pages 959-978.
    19. Ji, Jiayan & Song, Xianzhi & Song, Guofeng & Xu, Fuqiang & Shi, Yu & Lv, Zehao & Li, Shuang & Yi, Junlin, 2023. "Study on fracture evolution model of the enhanced geothermal system under thermal-hydraulic-chemical-deformation coupling," Energy, Elsevier, vol. 269(C).
    20. Song, Guofeng & Song, Xianzhi & Li, Gensheng & Shi, Yu & Wang, Gaosheng & Ji, Jiayan & Xu, Fuqiang & Song, Zihao, 2021. "An integrated multi-objective optimization method to improve the performance of multilateral-well geothermal system," Renewable Energy, Elsevier, vol. 172(C), pages 1233-1249.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:293:y:2024:i:c:s0360544224004237. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.