IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics0306261921007674.html
   My bibliography  Save this article

Demand Response with Volt/Var Optimization for unbalanced active distribution systems

Author

Listed:
  • Vijayan, Vineeth
  • Mohapatra, Abheejeet
  • Singh, S.N.

Abstract

The strong mutual influence of Demand Response (DR) and Volt/Var Optimization (VVO) on each other has largely been ignored in most of the previous schemes. Those research studies, which collectively consider DR and VVO, deal with minimal devices. Further, rescheduling of loads participating in DR and phase-specific operations of voltage control devices, such as Capacitor Banks (CBs), Voltage Regulators (VRs), On-Load Tap Changer (OLTC), and inverters of the solar photovoltaic sources, in an active three-phase distribution system significantly cause the unbalance levels. Hence, a comprehensive formulation, which considers DR to reduce peak load, VVO to minimize loss, and unbalance minimization using elastic loads, inverters, OLTC, VRs, and CBs, is proposed in this paper for three-phase unbalanced active distribution systems. Most previous studies deal with the cost while integrating DR and VVO, favoring real power rescheduling. In this research, rescheduling of kVA loads, affecting VVO devices’ operations, is adopted. A load factor-based load shifting index is proposed and utilized for this purpose. The proposed formulation aims to minimize the substation transformer’s current unbalance levels that seem to increase while limiting bus voltage unbalance factors. The proposed scheme is solved using the multi-objective particle swarm optimization and is tested on the modified IEEE 13-bus and IEEE 123-bus test systems. Compared with the Conservation Voltage Reduction (CVR) based method, the obtained results reveal that the proposed formulation minimizes peak load, loss, and unbalances more effectively while managing voltage rise or drop issues more efficiently without source or load curtailments.

Suggested Citation

  • Vijayan, Vineeth & Mohapatra, Abheejeet & Singh, S.N., 2021. "Demand Response with Volt/Var Optimization for unbalanced active distribution systems," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007674
    DOI: 10.1016/j.apenergy.2021.117361
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921007674
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117361?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    2. Mak, Davye & Choi, Dae-Hyun, 2020. "Optimization framework for coordinated operation of home energy management system and Volt-VAR optimization in unbalanced active distribution networks considering uncertainties," Applied Energy, Elsevier, vol. 276(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masoud Hamedi & Hossein Shayeghi & Seyedjalal Seyedshenava & Amin Safari & Abdollah Younesi & Nicu Bizon & Vasile-Gabriel Iana, 2023. "Developing an Integration of Smart-Inverter-Based Hosting-Capacity Enhancement in Dynamic Expansion Planning of PV-Penetrated LV Distribution Networks," Sustainability, MDPI, vol. 15(14), pages 1-27, July.
    2. Mauro Jurado & Eduardo Salazar & Mauricio Samper & Rodolfo Rosés & Diego Ojeda Esteybar, 2023. "Day-Ahead Operational Planning for DisCos Based on Demand Response Flexibility and Volt/Var Control," Energies, MDPI, vol. 16(20), pages 1-20, October.
    3. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    4. Azarnia, Mahsa & Rahimiyan, Morteza & Siano, Pierluigi, 2024. "Offering of active distribution network in real-time energy market by integrated energy management system and Volt-Var optimization," Applied Energy, Elsevier, vol. 358(C).
    5. Daiva Stanelyte & Neringa Radziukyniene & Virginijus Radziukynas, 2022. "Overview of Demand-Response Services: A Review," Energies, MDPI, vol. 15(5), pages 1-31, February.
    6. Antić, Tomislav & Capuder, Tomislav, 2024. "A geographic information system-based modelling, analysing and visualising of low voltage networks: The potential of demand time-shifting in the power quality improvement," Applied Energy, Elsevier, vol. 353(PA).
    7. Liu, Youquan & Li, Huazhen & Zhu, Jiawei & Lin, Yishuai & Lei, Weidong, 2023. "Multi-objective optimal scheduling of household appliances for demand side management using a hybrid heuristic algorithm," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Jeddi, Babak & Mishra, Yateendra & Ledwich, Gerard, 2021. "Distributed load scheduling in residential neighborhoods for coordinated operation of multiple home energy management systems," Applied Energy, Elsevier, vol. 300(C).
    3. Salah Beni Hamed & Mouna Ben Hamed & Lassaad Sbita, 2022. "Robust Voltage Control of a Buck DC-DC Converter: A Sliding Mode Approach," Energies, MDPI, vol. 15(17), pages 1-21, August.
    4. Kabir, Farzana & Yu, Nanpeng & Gao, Yuanqi & Wang, Wenyu, 2023. "Deep reinforcement learning-based two-timescale Volt-VAR control with degradation-aware smart inverters in power distribution systems," Applied Energy, Elsevier, vol. 335(C).
    5. Jeon, Soi & Choi, Dae-Hyun, 2022. "Joint optimization of Volt/VAR control and mobile energy storage system scheduling in active power distribution networks under PV prediction uncertainty," Applied Energy, Elsevier, vol. 310(C).
    6. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
    7. Niphon Kaewdornhan & Chitchai Srithapon & Rittichai Liemthong & Rongrit Chatthaworn, 2023. "Real-Time Multi-Home Energy Management with EV Charging Scheduling Using Multi-Agent Deep Reinforcement Learning Optimization," Energies, MDPI, vol. 16(5), pages 1-25, March.
    8. Etedadi, Farshad & Kelouwani, Sousso & Agbossou, Kodjo & Henao, Nilson & Laurencelle, François, 2023. "Consensus and sharing based distributed coordination of home energy management systems with demand response enabled baseboard heaters," Applied Energy, Elsevier, vol. 336(C).
    9. Ramitha Dissanayake & Akila Wijethunge & Janaka Wijayakulasooriya & Janaka Ekanayake, 2022. "Optimizing PV-Hosting Capacity with the Integrated Employment of Dynamic Line Rating and Voltage Regulation," Energies, MDPI, vol. 15(22), pages 1-19, November.
    10. Jingyi Zhang & Tongtian Sheng & Pan Gu & Miao Yu & Jiaxin Yan & Jianqun Sun & Shanhe Liu, 2024. "Dynamics Power Quality Cost Assessment Based on a Gradient Descent Method," Energies, MDPI, vol. 17(9), pages 1-14, April.
    11. Tostado-Véliz, Marcos & Kamel, Salah & Aymen, Flah & Jurado, Francisco, 2022. "A novel hybrid lexicographic-IGDT methodology for robust multi-objective solution of home energy management systems," Energy, Elsevier, vol. 253(C).
    12. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    13. Ruan, Hebin & Gao, Hongjun & Qiu, Haifeng & Gooi, Hoay Beng & Liu, Junyong, 2023. "Distributed operation optimization of active distribution network with P2P electricity trading in blockchain environment," Applied Energy, Elsevier, vol. 331(C).
    14. Calise, F. & Cappiello, F.L. & Cimmino, L. & Vicidomini, M., 2022. "Dynamic simulation modelling of reversible solid oxide fuel cells for energy storage purpose," Energy, Elsevier, vol. 260(C).
    15. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
    16. Antić, Tomislav & Capuder, Tomislav, 2024. "A geographic information system-based modelling, analysing and visualising of low voltage networks: The potential of demand time-shifting in the power quality improvement," Applied Energy, Elsevier, vol. 353(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s0306261921007674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.