IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v3y2010i2p258-276d7191.html
   My bibliography  Save this article

The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains

Author

Listed:
  • Brandon Storm

    (Wind Science and Engineering Research Center, Texas Tech University, Lubbock, TX, USA)

  • Sukanta Basu

    (Atmospheric Science Group, Department of Geosciences, Texas Tech University, Lubbock, TX, USA)

Abstract

For wind resource assessment projects, it is common practice to use a power-law relationship (U( z ) ~ z α ) and a fixed shear exponent (α = 1=7) to extrapolate the observed wind speed from a low measurement level to high turbine hub-heights. However, recent studies using tall-tower observations have found that the annual average shear exponents at several locations over the United States Great Plains (USGP) are significantly higher than 1=7. These findings highlight the critical need for detailed spatio-temporal characterizations of wind shear climatology over the USGP, where numerous large wind farms will be constructed in the foreseeable future. In this paper, a new generation numerical weather prediction model—the Weather Research and Forecasting (WRF) model, a fast and relatively inexpensive alternative to time-consuming and costly tall-tower projects, is utilized to determine whether it can reliably estimate the shear exponent and the magnitude of the directional shear at any arbitrary location over the USGP. Our results indicate that the WRF model qualitatively captures several low-level wind shear characteristics. However, there is definitely room for physics parameterization improvements for the WRF model to reliably represent the lower part of the atmospheric boundary layer.

Suggested Citation

  • Brandon Storm & Sukanta Basu, 2010. "The WRF Model Forecast-Derived Low-Level Wind Shear Climatology over the United States Great Plains," Energies, MDPI, vol. 3(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:3:y:2010:i:2:p:258-276:d:7191
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/3/2/258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/3/2/258/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sward, J.A. & Ault, T.R. & Zhang, K.M., 2023. "Spatial biases revealed by LiDAR in a multiphysics WRF ensemble designed for offshore wind," Energy, Elsevier, vol. 262(PA).
    2. Gunnell, Yanni & Mietton, Michel & Touré, Amadou Abdourhamane & Fujiki, Kenji, 2023. "Potential for wind farming in West Africa from an analysis of daily peak wind speeds and a review of low-level jet dynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    3. Xsitaaz T. Chadee & Naresh R. Seegobin & Ricardo M. Clarke, 2017. "Optimizing the Weather Research and Forecasting (WRF) Model for Mapping the Near-Surface Wind Resources over the Southernmost Caribbean Islands of Trinidad and Tobago," Energies, MDPI, vol. 10(7), pages 1-23, July.
    4. Jonghoon Jin & Yuzhang Che & Jiafeng Zheng & Feng Xiao, 2019. "Uncertainty Quantification of a Coupled Model for Wind Prediction at a Wind Farm in Japan," Energies, MDPI, vol. 12(8), pages 1-18, April.
    5. Rebecca J. Barthelmie & Tristan J. Shepherd & Jeanie A. Aird & Sara C. Pryor, 2020. "Power and Wind Shear Implications of Large Wind Turbine Scenarios in the US Central Plains," Energies, MDPI, vol. 13(16), pages 1-21, August.
    6. Gibson, Peter B. & Cullen, Nicolas J., 2015. "Synoptic and sub-synoptic circulation effects on wind resource variability – A case study from a coastal terrain setting in New Zealand," Renewable Energy, Elsevier, vol. 78(C), pages 253-263.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:3:y:2010:i:2:p:258-276:d:7191. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.