IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v261y2022ipbs0360544222021557.html
   My bibliography  Save this article

Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism

Author

Listed:
  • Wang, Jun
  • Cao, Junxing
  • Fu, Jingcheng
  • Xu, Hanqing

Abstract

Well logs are employed for analyzing lithology, determining formation parameters, and evaluating oil and gas reservoirs. However, in practice, well logs are often incomplete or distorted. Due to the complexity of underground structures and media heterogeneity, obtaining accurate results by using existing prediction methods is challenging. Thus, a reliable missing well logs prediction method must be developed. In this study, to estimate the missing well logs, we developed a deep learning model that combines the convolutional neural network (CNN) and bidirectional gated recurrent unit (BGRU) network with the self-attention mechanism. The proposed model comprises two modules. One module uses a CNN to extract the local morphological features of logging data, and the other one uses a BGRU to mine the variation trend and context information of logging data with depth from the output features of the CNN module. Next, the self-attention mechanism enables the network to allocate weights to highlight relevant information, thus improving the prediction accuracy. The application results on actual field data in two different areas demonstrate that the proposed model yields accurate and reliable prediction results and has feasibility and practicability.

Suggested Citation

  • Wang, Jun & Cao, Junxing & Fu, Jingcheng & Xu, Hanqing, 2022. "Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism," Energy, Elsevier, vol. 261(PB).
  • Handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021557
    DOI: 10.1016/j.energy.2022.125270
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222021557
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125270?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhi Geng & Yanfei Wang, 2020. "Author Correction: Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    2. Zang, Haixiang & Xu, Ruiqi & Cheng, Lilin & Ding, Tao & Liu, Ling & Wei, Zhinong & Sun, Guoqiang, 2021. "Residential load forecasting based on LSTM fusing self-attention mechanism with pooling," Energy, Elsevier, vol. 229(C).
    3. Mulashani, Alvin K. & Shen, Chuanbo & Nkurlu, Baraka M. & Mkono, Christopher N. & Kawamala, Martin, 2022. "Enhanced group method of data handling (GMDH) for permeability prediction based on the modified Levenberg Marquardt technique from well log data," Energy, Elsevier, vol. 239(PA).
    4. Zhi Geng & Yanfei Wang, 2020. "Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    5. Chen, Sai & Song, Yan & Ding, Yueting & Zhang, Ming & Nie, Rui, 2021. "Using long short-term memory model to study risk assessment and prediction of China’s oil import from the perspective of resilience theory," Energy, Elsevier, vol. 215(PB).
    6. Fan, Dongyan & Sun, Hai & Yao, Jun & Zhang, Kai & Yan, Xia & Sun, Zhixue, 2021. "Well production forecasting based on ARIMA-LSTM model considering manual operations," Energy, Elsevier, vol. 220(C).
    7. Peng Yao & Huaqiang Wu & Bin Gao & Jianshi Tang & Qingtian Zhang & Wenqiang Zhang & J. Joshua Yang & He Qian, 2020. "Fully hardware-implemented memristor convolutional neural network," Nature, Nature, vol. 577(7792), pages 641-646, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Jiuqiang & Lin, Niantian & Zhang, Kai & Fu, Chao & Zhang, Chong, 2024. "Transfer learning-based hybrid deep learning method for gas-bearing distribution prediction with insufficient training samples and uncertainty analysis," Energy, Elsevier, vol. 299(C).
    2. Qu, Fengtao & Liao, Hualin & Liu, Jiansheng & Wu, Tianyu & Shi, Fang & Xu, Yuqiang, 2024. "A novel well log data imputation methods with CGAN and swarm intelligence optimization," Energy, Elsevier, vol. 293(C).
    3. Wang, Jianguo & Han, Lincheng & Zhang, Xiuyu & Wang, Yingzhou & Zhang, Shude, 2023. "Electrical load forecasting based on variable T-distribution and dual attention mechanism," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Shaowei & Yang, Bo & Wang, Shukai & Guo, Zhi & Wang, Lin & Liu, Jinhua & Wu, Siyu, 2023. "Oil well production prediction based on CNN-LSTM model with self-attention mechanism," Energy, Elsevier, vol. 284(C).
    2. Yanfei Wang & Yaxin Ning & Yibo Wang, 2020. "Fractional Time Derivative Seismic Wave Equation Modeling for Natural Gas Hydrate," Energies, MDPI, vol. 13(22), pages 1-24, November.
    3. Min, Fuhong & Zhang, Wen & Ji, Ziyi & Zhang, Lei, 2021. "Switching dynamics of a non-autonomous FitzHugh-Nagumo circuit with piecewise-linear flux-controlled memristor," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Kandpal, Bakul & Pareek, Parikshit & Verma, Ashu, 2022. "A robust day-ahead scheduling strategy for EV charging stations in unbalanced distribution grid," Energy, Elsevier, vol. 249(C).
    5. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    6. Peng Chen & Fenghao Liu & Peng Lin & Peihong Li & Yu Xiao & Bihua Zhang & Gang Pan, 2023. "Open-loop analog programmable electrochemical memory array," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    8. Wang, Delu & Gan, Jun & Mao, Jinqi & Chen, Fan & Yu, Lan, 2023. "Forecasting power demand in China with a CNN-LSTM model including multimodal information," Energy, Elsevier, vol. 263(PE).
    9. Djohan Bonnet & Tifenn Hirtzlin & Atreya Majumdar & Thomas Dalgaty & Eduardo Esmanhotto & Valentina Meli & Niccolo Castellani & Simon Martin & Jean-François Nodin & Guillaume Bourgeois & Jean-Michel P, 2023. "Bringing uncertainty quantification to the extreme-edge with memristor-based Bayesian neural networks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Yulin Feng & Yizhou Zhang & Zheng Zhou & Peng Huang & Lifeng Liu & Xiaoyan Liu & Jinfeng Kang, 2024. "Memristor-based storage system with convolutional autoencoder-based image compression network," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Xiangpeng Liang & Yanan Zhong & Jianshi Tang & Zhengwu Liu & Peng Yao & Keyang Sun & Qingtian Zhang & Bin Gao & Hadi Heidari & He Qian & Huaqiang Wu, 2022. "Rotating neurons for all-analog implementation of cyclic reservoir computing," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    12. Ying Zhang & Ge-Qi Mao & Xiaolong Zhao & Yu Li & Meiyun Zhang & Zuheng Wu & Wei Wu & Huajun Sun & Yizhong Guo & Lihua Wang & Xumeng Zhang & Qi Liu & Hangbing Lv & Kan-Hao Xue & Guangwei Xu & Xiangshui, 2021. "Evolution of the conductive filament system in HfO2-based memristors observed by direct atomic-scale imaging," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Long Liu & Di Wang & Dandan Wang & Yan Sun & Huai Lin & Xiliang Gong & Yifan Zhang & Ruifeng Tang & Zhihong Mai & Zhipeng Hou & Yumeng Yang & Peng Li & Lan Wang & Qing Luo & Ling Li & Guozhong Xing & , 2024. "Domain wall magnetic tunnel junction-based artificial synapses and neurons for all-spin neuromorphic hardware," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    14. Yueyang Jia & Qianqian Yang & Yue-Wen Fang & Yue Lu & Maosong Xie & Jianyong Wei & Jianjun Tian & Linxing Zhang & Rui Yang, 2024. "Giant tunnelling electroresistance in atomic-scale ferroelectric tunnel junctions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    15. Mkono, Christopher N. & Chuanbo, Shen & Mulashani, Alvin K. & Mwakipunda, Grant Charles, 2023. "Deep learning integrated approach for hydrocarbon source rock evaluation and geochemical indicators prediction in the Jurassic - Paleogene of the Mandawa basin, SE Tanzania," Energy, Elsevier, vol. 284(C).
    16. Li, Ruilian & Zeng, Deliang & Li, Tingting & Ti, Baozhong & Hu, Yong, 2023. "Real-time prediction of SO2 emission concentration under wide range of variable loads by convolution-LSTM VE-transformer," Energy, Elsevier, vol. 269(C).
    17. Xingan Jiang & Xueyun Wang & Xiaolei Wang & Xiangping Zhang & Ruirui Niu & Jianming Deng & Sheng Xu & Yingzhuo Lun & Yanyu Liu & Tianlong Xia & Jianming Lu & Jiawang Hong, 2022. "Manipulation of current rectification in van der Waals ferroionic CuInP2S6," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Ling, Jihong & Zhang, Bingyang & Dai, Na & Xing, Jincheng, 2023. "Coupling input feature construction methods and machine learning algorithms for hourly secondary supply temperature prediction," Energy, Elsevier, vol. 278(C).
    19. Yu, Fei & Kong, Xinxin & Yao, Wei & Zhang, Jin & Cai, Shuo & Lin, Hairong & Jin, Jie, 2024. "Dynamics analysis, synchronization and FPGA implementation of multiscroll Hopfield neural networks with non-polynomial memristor," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    20. Kamil Kashif & Robert 'Slepaczuk, 2024. "LSTM-ARIMA as a Hybrid Approach in Algorithmic Investment Strategies," Papers 2406.18206, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:261:y:2022:i:pb:s0360544222021557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.