IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17123-6.html
   My bibliography  Save this article

Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification

Author

Listed:
  • Zhi Geng

    (Chinese Academy of Sciences
    Chinese Academy of Sciences)

  • Yanfei Wang

    (Chinese Academy of Sciences
    Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Geoscientists mainly identify subsurface geologic features using exploration-derived seismic data. Classification or segmentation of 2D/3D seismic images commonly relies on conventional deep learning methods for image recognition. However, complex reflections of seismic waves tend to form high-dimensional and multi-scale signals, making traditional convolutional neural networks (CNNs) computationally costly. Here we propose a highly efficient and resource-saving CNN architecture (SeismicPatchNet) with topological modules and multi-scale-feature fusion units for classifying seismic data, which was discovered by an automated data-driven search strategy. The storage volume of the architecture parameters (0.73 M) is only ~2.7 MB, ~0.5% of the well-known VGG-16 architecture. SeismicPatchNet predicts nearly 18 times faster than ResNet-50 and shows an overwhelming advantage in identifying Bottom Simulating Reflection (BSR), an indicator of marine gas-hydrate resources. Saliency mapping demonstrated that our architecture captured key features well. These results suggest the prospect of end-to-end interpretation of multiple seismic datasets at extremely low computational cost.

Suggested Citation

  • Zhi Geng & Yanfei Wang, 2020. "Automated design of a convolutional neural network with multi-scale filters for cost-efficient seismic data classification," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17123-6
    DOI: 10.1038/s41467-020-17123-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17123-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17123-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanfei Wang & Yaxin Ning & Yibo Wang, 2020. "Fractional Time Derivative Seismic Wave Equation Modeling for Natural Gas Hydrate," Energies, MDPI, vol. 13(22), pages 1-24, November.
    2. Wang, Jun & Cao, Junxing & Fu, Jingcheng & Xu, Hanqing, 2022. "Missing well logs prediction using deep learning integrated neural network with the self-attention mechanism," Energy, Elsevier, vol. 261(PB).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17123-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.