IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v25y2000i4p325-337.html
   My bibliography  Save this article

Energy and mass balances in multiple-effect upward solar distillers with air flow through the last-effect unit

Author

Listed:
  • Yeh, Ho-Ming
  • Ho, Chii-Dong

Abstract

Considerable improvement in productivity may be obtained if water vapor in the last-effect unit is carried away directly by flowing air. The theory of a closed-type upward multiple-effect solar distiller has been modified to that of an open-type device, and the energy and mass balances have been derived. The production rate of distilled water for each effect under various climate, design, and operational conditions may be predicted by simultaneously solving the appropriate equations.

Suggested Citation

  • Yeh, Ho-Ming & Ho, Chii-Dong, 2000. "Energy and mass balances in multiple-effect upward solar distillers with air flow through the last-effect unit," Energy, Elsevier, vol. 25(4), pages 325-337.
  • Handle: RePEc:eee:energy:v:25:y:2000:i:4:p:325-337
    DOI: 10.1016/S0360-5442(99)00078-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054429900078X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0360-5442(99)00078-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yeh, Ho-Ming & Chen, Zhi-Fang, 1992. "Experimental studies on wick-type, double-effect solar distillers with air flow through the second-effect unit," Energy, Elsevier, vol. 17(3), pages 269-273.
    2. Yeh, Ho-Ming & Chen, Zhi-Fang, 1994. "Energy balances for upward-type, double-effect solar distillers with air flow through the second-effect unit," Energy, Elsevier, vol. 19(6), pages 619-626.
    3. Yeh, Ho-Ming & Shau-Wei, Tsai & Nien-Tung, Ma, 1988. "Energy balances in double-effect wick-type solar distillers," Energy, Elsevier, vol. 13(2), pages 115-120.
    4. Yeh, Ho-Ming, 1993. "Experimental studies on upward-type double-effect solar distillers with air flow through the second effect," Energy, Elsevier, vol. 18(11), pages 1107-1111.
    5. Ho-Ming Yeh, & Lie-Chaing Chen,, 1987. "Experimental studies on double-effect solar distillers," Energy, Elsevier, vol. 12(12), pages 1251-1256.
    6. Yeh, Ho-Ming & Ma, Nien-Tung, 1990. "Energy balances for upward-type, double-effect solar stills," Energy, Elsevier, vol. 15(12), pages 1161-1169.
    7. Yeh, Ho-Ming & Chen, Lie-Chaing, 1990. "Experimental studies on upward-type double-effect solar distillers," Energy, Elsevier, vol. 15(2), pages 123-129.
    8. Yeh, Ho-Ming & Chen, Zhi-Fang, 1992. "Energy balances in wick-type double-effect solar distillers with air flow through the second-effect unit," Energy, Elsevier, vol. 17(12), pages 1239-1247.
    9. Mahdi, N.Al, 1992. "Performance prediction of a multi-basin solar still," Energy, Elsevier, vol. 17(1), pages 87-93.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    2. Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. El-Sebaii, A.A. & El-Bialy, E., 2015. "Advanced designs of solar desalination systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 1198-1212.
    2. Rajaseenivasan, T. & Murugavel, K. Kalidasa & Elango, T. & Hansen, R. Samuel, 2013. "A review of different methods to enhance the productivity of the multi-effect solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 248-259.
    3. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    4. Hongfei, Zheng & Xinshi, Ge, 2002. "Steady-state experimental study of a closed recycle solar still with enhanced falling film evaporation and regeneration," Renewable Energy, Elsevier, vol. 26(2), pages 295-308.
    5. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    6. El-Sebaii, A.A & Aboul-Enein, S & Ramadan, M.R.I & El-Bialy, E, 2000. "Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber," Energy, Elsevier, vol. 25(1), pages 35-49.
    7. Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.
    8. Kumar R, Reji & Pandey, A.K. & Samykano, M. & Aljafari, Belqasem & Ma, Zhenjun & Bhattacharyya, Suvanjan & Goel, Varun & Ali, Imtiaz & Kothari, Richa & Tyagi, V.V., 2022. "Phase change materials integrated solar desalination system: An innovative approach for sustainable and clean water production and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Choi, Soon-Ho, 2017. "Thermal type seawater desalination with barometric vacuum and solar energy," Energy, Elsevier, vol. 141(C), pages 1332-1349.
    10. Arunkumar, T. & Raj, Kaiwalya & Dsilva Winfred Rufuss, D. & Denkenberger, David & Tingting, Guo & Xuan, Li & Velraj, R., 2019. "A review of efficient high productivity solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 197-220.
    11. Syed Noman Danish & Abdelrahman El-Leathy & Mohanad Alata & Hany Al-Ansary, 2019. "Enhancing Solar Still Performance Using Vacuum Pump and Geothermal Energy," Energies, MDPI, vol. 12(3), pages 1-13, February.
    12. Vishwanath Kumar, P. & Kumar, Anil & Prakash, Om & Kaviti, Ajay Kumar, 2015. "Solar stills system design: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 153-181.
    13. Akash, Bilal A. & Mohsen, Mousa S. & Osta, Omar & Elayan, Yaser, 1998. "Experimental evaluation of a single-basin solar still using different absorbing materials," Renewable Energy, Elsevier, vol. 14(1), pages 307-310.
    14. Haddad, O.M. & Al-Nimr, M.A. & Maqableh, A., 2000. "Enhanced solar still performance using a radiative cooling system," Renewable Energy, Elsevier, vol. 21(3), pages 459-469.
    15. Samimi, Mohsen & Moghadam, Hamid, 2024. "Investigation of structural parameters for inclined weir-type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:25:y:2000:i:4:p:325-337. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.