IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v190y2024ipas1364032123008274.html
   My bibliography  Save this article

Investigation of structural parameters for inclined weir-type solar stills

Author

Listed:
  • Samimi, Mohsen
  • Moghadam, Hamid

Abstract

The solar still, in which saline or brackish water is converted into freshwater using renewable solar energy, can be an effective solution to water scarcity. Inclined solar stills are well-known due to their high production yields compared to other types of solar stills. In this study, an inclined weir-type solar still was developed as a modified inclined solar still with an emphasis on the effect of structural parameters, such as weir height, distance between weirs, and distance between the absorber plate and the condenser cover, on distilled water production. The optimal values of structural parameters for the maximum freshwater production were specified by the response surface methodology and a quadratic model derived from a Box-Behnken design model. The results showed that the operational variables of the inclined weir-type solar still system significantly impacted the water production volume. Using a weir height of 2 cm, a distance of 3.5 cm between weirs, and a distance of 15 cm between the absorber plate and the condenser cover, the maximum water production volume was achieved at 6.474 kg m−2.day−1. The selected model had R2, Radj2 and Rpred2 values of 0.9978, 0.9939, and 0.9756, respectively. The maximum and minimum volumes of the produced water were obtained as 6.64125 and 1.79792 kg m−2. day1, based on the multiple response prediction of the variables. According to the validation tests, the model’s accuracy in prediction of the maximum amount of freshwater production was notable (97.49%).

Suggested Citation

  • Samimi, Mohsen & Moghadam, Hamid, 2024. "Investigation of structural parameters for inclined weir-type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
  • Handle: RePEc:eee:rensus:v:190:y:2024:i:pa:s1364032123008274
    DOI: 10.1016/j.rser.2023.113969
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123008274
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113969?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barrera, E., 1992. "A technical and economical analysis of a solar water still in Mexico," Renewable Energy, Elsevier, vol. 2(4), pages 489-495.
    2. Reif, John H. & Alhalabi, Wadee, 2015. "Solar-thermal powered desalination: Its significant challenges and potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 152-165.
    3. Kalidasa Murugavel, K. & Anburaj, P. & Samuel Hanson, R. & Elango, T., 2013. "Progresses in inclined type solar stills," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 364-377.
    4. Sampathkumar, K. & Arjunan, T.V. & Pitchandi, P. & Senthilkumar, P., 2010. "Active solar distillation--A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1503-1526, August.
    5. Sharon, H. & Reddy, K.S., 2015. "A review of solar energy driven desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1080-1118.
    6. Bait, Omar & Si–Ameur, Mohamed, 2016. "Numerical investigation of a multi-stage solar still under Batna climatic conditions: Effect of radiation term on mass and heat energy balances," Energy, Elsevier, vol. 98(C), pages 308-323.
    7. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    8. Kabeel, A.E. & Omara, Z.M. & Younes, M.M., 2015. "Techniques used to improve the performance of the stepped solar still—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 178-188.
    9. Yeh, Ho-Ming & Ma, Nien-Tung, 1990. "Energy balances for upward-type, double-effect solar stills," Energy, Elsevier, vol. 15(12), pages 1161-1169.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Samimi, Mohsen & Moghadam, Hamid, 2024. "Modified evacuated tube collector basin solar still for optimal desalination of reverse osmosis concentrate," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nayi, Kuldeep H. & Modi, Kalpesh V., 2018. "Pyramid solar still: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 136-148.
    2. Kaviti, Ajay Kumar & Yadav, Akhilesh & Shukla, Amit, 2016. "Inclined solar still designs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 429-451.
    3. Kabeel, A.E. & Omara, Z.M. & Essa, F.A. & Abdullah, A.S., 2016. "Solar still with condenser – A detailed review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 839-857.
    4. Jani, Hardik K. & Modi, Kalpesh V., 2018. "A review on numerous means of enhancing heat transfer rate in solar-thermal based desalination devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 302-317.
    5. El-Sebaii, A.A & Aboul-Enein, S & Ramadan, M.R.I & El-Bialy, E, 2000. "Year-round performance of a modified single-basin solar still with mica plate as a suspended absorber," Energy, Elsevier, vol. 25(1), pages 35-49.
    6. Anand, B. & Shankar, R. & Murugavelh, S. & Rivera, W. & Midhun Prasad, K. & Nagarajan, R., 2021. "A review on solar photovoltaic thermal integrated desalination technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    7. M, Chandrashekara & Yadav, Avadhesh, 2017. "Water desalination system using solar heat: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1308-1330.
    8. Sharshir, S.W. & Elsheikh, A.H. & Peng, Guilong & Yang, Nuo & El-Samadony, M.O.A. & Kabeel, A.E., 2017. "Thermal performance and exergy analysis of solar stills – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 521-544.
    9. Mu, L. & Chen, L. & Lin, L. & Park, Y.H. & Wang, H. & Xu, P. & Kota, K. & Kuravi, S., 2021. "An overview of solar still enhancement approaches for increased freshwater production rates from a thermal process perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    10. Xu, Haiyang & Ji, Xu & Wang, Liuling & Huang, Jingxin & Han, Jingyang & Wang, Yue, 2020. "Performance study on a small-scale photovoltaic electrodialysis system for desalination," Renewable Energy, Elsevier, vol. 154(C), pages 1008-1013.
    11. Sathyamurthy, Ravishankar & El-Agouz, S.A. & Nagarajan, P.K. & Subramani, J. & Arunkumar, T. & Mageshbabu, D. & Madhu, B. & Bharathwaaj, R. & Prakash, N., 2017. "A Review of integrating solar collectors to solar still," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1069-1097.
    12. A. Muthu Manokar & M. Vimala & Ravishankar Sathyamurthy & A. E. Kabeel & D. Prince Winston & Ali J. Chamkha, 2020. "Enhancement of potable water production from an inclined photovoltaic panel absorber solar still by integrating with flat-plate collector," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4145-4167, June.
    13. Omar, Amr & Nashed, Amir & Li, Qiyuan & Leslie, Greg & Taylor, Robert A., 2020. "Pathways for integrated concentrated solar power - Desalination: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    14. Omara, Z.M. & Kabeel, A.E. & Abdullah, A.S., 2017. "A review of solar still performance with reflectors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 638-649.
    15. Dsilva Winfred Rufuss, D. & Iniyan, S. & Suganthi, L. & Davies, P.A., 2016. "Solar stills: A comprehensive review of designs, performance and material advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 464-496.
    16. Gonzalez, Alonso & Grágeda, Mario & Ushak, Svetlana, 2017. "Assessment of pilot-scale water purification module with electrodialysis technology and solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1643-1652.
    17. Mohamed, A.S.A. & Shahdy, Abanob G. & Mohamed, Hany A. & Ahmed, M. Salem, 2023. "A comprehensive review of the vacuum solar still systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    18. Rabhy, Omar O. & Adam, I.G. & Elsayed Youssef, M. & Rashad, A.B. & Hassan, Gasser E., 2019. "Numerical and experimental analyses of a transparent solar distiller for an agricultural greenhouse," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Sayyaadi, Hoseyn & Ghorbani, Ghadir, 2018. "Conceptual design and optimization of a small-scale dual power-desalination system based on the Stirling prime-mover," Applied Energy, Elsevier, vol. 223(C), pages 457-471.
    20. Gakkhar, Nikhil & Soni, M.S. & Jakhar, Sanjeev, 2016. "Second law thermodynamic study of solar assisted distillation system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 519-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:190:y:2024:i:pa:s1364032123008274. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.