IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223024969.html
   My bibliography  Save this article

Performance evaluation on a novel combined cool/heat and power (CCP/CHP) system integrating an SOFC-GT plant with a solar-assisted LiBr absorption cooling/heating unit

Author

Listed:
  • Tan, Luzhi
  • Chen, Changnian
  • Gong, Zhiqiang
  • Xia, Lijiang

Abstract

Motivated by the demand for a balanced electricity and heat/cool output, as well as by the recent increasing interest on the SOFC-GT based microgrid that incorporates renewable energies, this study aims at the presentation of an “all-round” CCP/CHP system based on the integration of a modified SOFC-GT plant with a novel solar-assisted LiBr absorption unit. The SOFC-GT plant, fuelled with the natural gas (NG), allows a relative independent operation of the GT from the SOFC, and can operate with a comprehensive variable-load strategy. The SOFC-GT plant exhaust and the solar hot water, the two different heat sources, attain a perfect thermal match in the proposed double-effect LiBr absorption cycle. Performance of the proposed system is investigated through building a complete system-level mode. Results of the performance investigation are presented in terms of baseline state data and operation efficiency maps which are accompanied by a well-informed discussion on related findings. The results also represent a satisfactory completion of the research objective.

Suggested Citation

  • Tan, Luzhi & Chen, Changnian & Gong, Zhiqiang & Xia, Lijiang, 2023. "Performance evaluation on a novel combined cool/heat and power (CCP/CHP) system integrating an SOFC-GT plant with a solar-assisted LiBr absorption cooling/heating unit," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024969
    DOI: 10.1016/j.energy.2023.129102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223024969
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129102?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Obara, Shin'ya, 2023. "Economic performance of an SOFC combined system with green hydrogen methanation of stored CO2," Energy, Elsevier, vol. 262(PA).
    2. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    3. Zheng, Danxing & Chen, Bin & Qi, Yun & Jin, Hongguang, 2006. "Thermodynamic analysis of a novel absorption power/cooling combined-cycle," Applied Energy, Elsevier, vol. 83(4), pages 311-323, April.
    4. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2017. "Investigation on performance of an integrated SOFC-GE-KC power generation system using gaseous fuel from biomass gasification," Renewable Energy, Elsevier, vol. 107(C), pages 448-461.
    5. Tashtoush, Bourhan M. & Al-Nimr, Moh'd A. & Khasawneh, Mohammad A., 2019. "A comprehensive review of ejector design, performance, and applications," Applied Energy, Elsevier, vol. 240(C), pages 138-172.
    6. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    7. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    8. Obara, Shin'ya & Morel, Jorge & Okada, Masaki & Kobayashi, Kazuma, 2016. "Performance evaluation of an independent microgrid comprising an integrated coal gasification fuel cell combined cycle, large-scale photovoltaics, and a pumped-storage power station," Energy, Elsevier, vol. 116(P1), pages 78-93.
    9. Mehr, A.S. & Gandiglio, M. & MosayebNezhad, M. & Lanzini, A. & Mahmoudi, S.M.S. & Yari, M. & Santarelli, M., 2017. "Solar-assisted integrated biogas solid oxide fuel cell (SOFC) installation in wastewater treatment plant: Energy and economic analysis," Applied Energy, Elsevier, vol. 191(C), pages 620-638.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Yuhao & Luo, Xiaobing & Tu, Zhengkai & Siew Hwa Chan,, 2022. "Multi-criteria assessment of solid oxide fuel cell–combined cooling, heating, and power system model for residential application," Energy, Elsevier, vol. 259(C).
    2. Tan, Luzhi & Dong, Xiaoming & Gong, Zhiqiang & Wang, Mingtao, 2018. "Analysis on energy efficiency and CO2 emission reduction of an SOFC-based energy system served public buildings with large interior zones," Energy, Elsevier, vol. 165(PB), pages 1106-1118.
    3. Pal, Ankit & Ilango, G. Saravana, 2024. "Design and techno-economic analysis of an off-grid integrated PV-biogas system with a constant temperature digester for a cost-effective rural application," Energy, Elsevier, vol. 287(C).
    4. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Su, Bosheng & Han, Wei & Zhang, Xiaosong & Chen, Yi & Wang, Zefeng & Jin, Hongguang, 2018. "Assessment of a combined cooling, heating and power system by synthetic use of biogas and solar energy," Applied Energy, Elsevier, vol. 229(C), pages 922-935.
    6. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Huang, Zhifeng & Chua, Kian Jon, 2021. "Study on fundamental link between mixing efficiency and entrainment performance of a steam ejector," Energy, Elsevier, vol. 215(PB).
    7. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    8. Liu, Jiejie & Li, Yao & Ma, Yanan & Qin, Ruomu & Meng, Xianyang & Wu, Jiangtao, 2023. "Two-layer multiple scenario optimization framework for integrated energy system based on optimal energy contribution ratio strategy," Energy, Elsevier, vol. 285(C).
    9. Han, Qingyang & Liu, Changchao & Xue, Haoyuan & Zhang, Hailun & Sun, Wenhui & Sun, Wenxu & Jia, Lei, 2023. "Working condition expansion and performance optimization of two-stage ejector based on optimal switching strategy," Energy, Elsevier, vol. 282(C).
    10. Al-Mousawi, Fadhel Noraldeen & Al-Dadah, Raya & Mahmoud, Saad, 2016. "Low grade heat driven adsorption system for cooling and power generation with small-scale radial inflow turbine," Applied Energy, Elsevier, vol. 183(C), pages 1302-1316.
    11. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    12. Moradpoor, Iraj & Ebrahimi, Masood, 2019. "Thermo-environ analyses of a novel trigeneration cycle based on clean technologies of molten carbonate fuel cell, stirling engine and Kalina cycle," Energy, Elsevier, vol. 185(C), pages 1005-1016.
    13. Shayan, E. & Zare, V. & Mirzaee, I., 2019. "On the use of different gasification agents in a biomass fueled SOFC by integrated gasifier: A comparative exergo-economic evaluation and optimization," Energy, Elsevier, vol. 171(C), pages 1126-1138.
    14. Zhang, Youjun & Xiong, Nian & Ge, Zhihua & Zhang, Yichen & Hao, Junhong & Yang, Zhiping, 2020. "A novel cascade heating system for waste heat recovery in the combined heat and power plant integrating with the steam jet pump," Applied Energy, Elsevier, vol. 278(C).
    15. Li, Xiaoqiong & Wang, Xiaoyan & Zhang, Yufeng & Fang, Lei & Deng, Na & Zhang, Yan & Jin, Zhendong & Yu, Xiaohui & Yao, Sheng, 2020. "Experimental and economic analysis with a novel ejector-based detection system for thermodynamic measurement of compressors," Applied Energy, Elsevier, vol. 261(C).
    16. Yuan, Yu & Bai, Zhang & Zhou, Shengdong & Zheng, Bo & Hu, Wenxin, 2022. "Potential of applying the thermochemical recuperation in combined cooling, heating and power generation: Flexible demand response characteristics," Applied Energy, Elsevier, vol. 325(C).
    17. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    18. Chen, Xiaoyuan & Jiang, Shan & Chen, Yu & Lei, Yi & Zhang, Donghui & Zhang, Mingshun & Gou, Huayu & Shen, Boyang, 2022. "A 10 MW class data center with ultra-dense high-efficiency energy distribution: Design and economic evaluation of superconducting DC busbar networks," Energy, Elsevier, vol. 250(C).
    19. Ganesh Sampatrao Patil & Anwar Mulla & Taha Selim Ustun, 2022. "Impact of Wind Farm Integration on LMP in Deregulated Energy Markets," Sustainability, MDPI, vol. 14(7), pages 1-20, April.
    20. Mehr, A.S. & MosayebNezhad, M. & Lanzini, A. & Yari, M. & Mahmoudi, S.M.S. & Santarelli, M., 2018. "Thermodynamic assessment of a novel SOFC based CCHP system in a wastewater treatment plant," Energy, Elsevier, vol. 150(C), pages 299-309.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223024969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.