IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v259y2022ics0360544222017339.html
   My bibliography  Save this article

A novel neural network and grey correlation analysis method for computation of the heat transfer limit of a loop heat pipe (LHP)

Author

Listed:
  • Liu, Xuexiang
  • Liu, Haowen
  • Zhao, Xudong
  • Han, Zhonghe
  • Cui, Yu
  • Yu, Min

Abstract

A loop heat pipe (LHP) has the advantages of larger heat transfer capacity and anti-gravity operational performance. The current prediction models for LHP heat transfer capacity have the difficulties in popularization of data volume and determination of accurate parametrical data, leading to the uncertain and varying outcomes that are inconsistent and away from reality. To address these challenges, this paper developed a first-of-its-kind big-data-driven LHP heat transfer limit prediction model by employing the neural network and grey correlation analysis method, which have advantages of high precision and large data volume. A double-layer feedforward neural network with sigmoid hidden neuron and linear output neuron was constructed to predict the heat transfer limit of the LHP. The grey scale analysis is applied to select the variables with correlation coefficient greater than 0.5, thus giving the clear identification of the both input parameters (e.g. refrigerant temperature, filling liquid quantity, height difference between evaporator and condenser, and number of heat pipe array) and output ones (heat transfer limit). The previously validated LHP heat transfer limit calculation model is used to calculate the heat transfer limit corresponding to the selected parameters, thus formulating 1,010,038 sets of data points. Of those calculated datasets, 707,026 (70% of data) are treated as a training set, 151,506 (15% of data) as a verification set, and 151,506 groups of data (15% of data) as the test sets for training. After several optimization and debugging, the number of hidden layer neurons is determined to be 100. The correlation coefficient (R), mean square error (MSE) and mean relative error (MRE) are 0.9997, 52.7 and 0.32% respectively, all of which are within reasonable accuracy range. The results show that the model has good prediction accuracy and consistence and is an effective tool to characterize and optimize the LHP in various application synergies.

Suggested Citation

  • Liu, Xuexiang & Liu, Haowen & Zhao, Xudong & Han, Zhonghe & Cui, Yu & Yu, Min, 2022. "A novel neural network and grey correlation analysis method for computation of the heat transfer limit of a loop heat pipe (LHP)," Energy, Elsevier, vol. 259(C).
  • Handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017339
    DOI: 10.1016/j.energy.2022.124830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hamid, Khalid & Sajjad, Uzair & Yang, Kai Shing & Wu, Shih-Kuo & Wang, Chi-Chuan, 2022. "Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling," Energy, Elsevier, vol. 238(PB).
    2. Hafiz M. Asfahan & Uzair Sajjad & Muhammad Sultan & Imtiyaz Hussain & Khalid Hamid & Mubasher Ali & Chi-Chuan Wang & Redmond R. Shamshiri & Muhammad Usman Khan, 2021. "Artificial Intelligence for the Prediction of the Thermal Performance of Evaporative Cooling Systems," Energies, MDPI, vol. 14(13), pages 1-20, July.
    3. Thierno M. O. Diallo & Min Yu & Jinzhi Zhou & Xudong Zhao & Jie Ji & David Hardy, 2018. "Analytical Investigation of the Heat-Transfer Limits of a Novel Solar Loop-Heat Pipe Employing a Mini-Channel Evaporator," Energies, MDPI, vol. 11(1), pages 1-18, January.
    4. Alam, Shah & Kaushik, S.C. & Garg, S.N., 2009. "Assessment of diffuse solar energy under general sky condition using artificial neural network," Applied Energy, Elsevier, vol. 86(4), pages 554-564, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Hainan & Tian, Yaling & Tian, Changqing & Zhai, Zhiqiang, 2023. "Effect of key structure and working condition parameters on a compact flat-evaporator loop heat pipe for chip cooling of data centers," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Uzair Sajjad & Imtiyaz Hussain & Muhammad Sultan & Sadaf Mehdi & Chi-Chuan Wang & Kashif Rasool & Sayed M. Saleh & Ashraf Y. Elnaggar & Enas E. Hussein, 2021. "Determining the Factors Affecting the Boiling Heat Transfer Coefficient of Sintered Coated Porous Surfaces," Sustainability, MDPI, vol. 13(22), pages 1-19, November.
    2. Showkat Ahmad Bhat & Nen-Fu Huang & Imtiyaz Hussain & Farzana Bibi & Uzair Sajjad & Muhammad Sultan & Abdullah Saad Alsubaie & Khaled H. Mahmoud, 2021. "On the Classification of a Greenhouse Environment for a Rose Crop Based on AI-Based Surrogate Models," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    3. Joshua Adeniyi Depiver & Sabuj Mallik, 2023. "An Empirical Study on Convective Drying of Ginger Rhizomes Leveraging Environmental Stress Chambers and Linear Heat Conduction Methodology," Agriculture, MDPI, vol. 13(7), pages 1-28, June.
    4. Yu, Min & Diallo, Thierno M.O. & Zhao, Xudong & Zhou, Jinzhi & Du, Zhenyu & Ji, Jie & Cheng, Yuanda, 2018. "Analytical study of impact of the wick’s fractal parameters on the heat transfer capacity of a novel micro-channel loop heat pipe," Energy, Elsevier, vol. 158(C), pages 746-759.
    5. Zarzo, Manuel & Martí, Pau, 2011. "Modeling the variability of solar radiation data among weather stations by means of principal components analysis," Applied Energy, Elsevier, vol. 88(8), pages 2775-2784, August.
    6. Furlan, Claudia & de Oliveira, Amauri Pereira & Soares, Jacyra & Codato, Georgia & Escobedo, João Francisco, 2012. "The role of clouds in improving the regression model for hourly values of diffuse solar radiation," Applied Energy, Elsevier, vol. 92(C), pages 240-254.
    7. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    8. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Zhang, Jizhe, 2021. "Comprehensive review of the recent advances in PV/T system with loop-pipe configuration and nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Salins, Sampath Suranjan & Reddy, S.V. Kota & Kumar, Shiva, 2022. "Modelling of a multistage reciprocating humidifier and performance analysis for various packing configurations," Energy, Elsevier, vol. 241(C).
    10. Deymi-Dashtebayaz, Mahdi & Davoodi, Vajihe & Khutornaya, Julia & Sergienko, Olga, 2023. "Parametric analysis and multi-objective optimization of a heat pump dryer based on working conditions and using different refrigerants," Energy, Elsevier, vol. 284(C).
    11. Kim, Byungil & Han, SangUk & Heo, Jae & Jung, Jaehoon, 2020. "Proof-of-concept of a two-stage approach for selecting suitable slopes on a highway network for solar photovoltaic systems: A case study in South Korea," Renewable Energy, Elsevier, vol. 151(C), pages 366-377.
    12. Diallo, Thierno M.O. & Yu, Min & Zhou, Jinzhi & Zhao, Xudong & Shittu, Samson & Li, Guiqiang & Ji, Jie & Hardy, David, 2019. "Energy performance analysis of a novel solar PVT loop heat pipe employing a microchannel heat pipe evaporator and a PCM triple heat exchanger," Energy, Elsevier, vol. 167(C), pages 866-888.
    13. Emeksiz, Cem & Tan, Mustafa, 2022. "Wind speed estimation using novelty hybrid adaptive estimation model based on decomposition and deep learning methods (ICEEMDAN-CNN)," Energy, Elsevier, vol. 249(C).
    14. Notton, Gilles & Paoli, Christophe & Ivanova, Liliana & Vasileva, Siyana & Nivet, Marie Laure, 2013. "Neural network approach to estimate 10-min solar global irradiation values on tilted planes," Renewable Energy, Elsevier, vol. 50(C), pages 576-584.
    15. Dahmani, Kahina & Notton, Gilles & Voyant, Cyril & Dizene, Rabah & Nivet, Marie Laure & Paoli, Christophe & Tamas, Wani, 2016. "Multilayer Perceptron approach for estimating 5-min and hourly horizontal global irradiation from exogenous meteorological data in locations without solar measurements," Renewable Energy, Elsevier, vol. 90(C), pages 267-282.
    16. Hamid, Khalid & Sajjad, Uzair & Yang, Kai Shing & Wu, Shih-Kuo & Wang, Chi-Chuan, 2022. "Assessment of an energy efficient closed loop heat pump dryer for high moisture contents materials: An experimental investigation and AI based modelling," Energy, Elsevier, vol. 238(PB).
    17. Ji, Yasheng & Yuan, Yanping & Zhao, Kaiming & Ji, Wenhui & Zhou, Jinzhi, 2023. "Numerical study on the heat transfer limits of a novel dual-condenser heat pipe integrated with photovoltaic/thermal (PV/T) system," Renewable Energy, Elsevier, vol. 218(C).
    18. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    19. Kocifaj, Miroslav & Kómar, Ladislav, 2016. "Modeling diffuse irradiance under arbitrary and homogeneous skies: Comparison and validation," Applied Energy, Elsevier, vol. 166(C), pages 117-127.
    20. Hussain, Sajid & Al-Alili, Ali, 2016. "A new approach for model validation in solar radiation using wavelet, phase and frequency coherence analysis," Applied Energy, Elsevier, vol. 164(C), pages 639-649.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:259:y:2022:i:c:s0360544222017339. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.