IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222017145.html
   My bibliography  Save this article

Optimization of smart energy systems based on response time and energy storage losses

Author

Listed:
  • Andiappan, Viknesh

Abstract

Smart grids contain flexible smart energy systems to cater to users' energy demands. Energy systems in smart grid operations must be agile and have quick response times to adjust operations toward demand-side changes. However, technologies operating within smart energy systems tend to have unique (i.e., fast or slow) response times. This poses a complex decision-making problem for smart energy systems. Several studies have evaluated smart energy systems. Unfortunately, no work explicitly considered response times of energy systems in smart grid operations. Moreover, previous studies assumed pre-defined energy storage technologies in their analysis without considering technology selection and did not factor in storage losses. This work aims to present a generic optimization model that optimizes the selection of technologies in energy system operations for a smart grid while factoring in technology response time and energy storage losses. An illustrative example was solved to demonstrate the impact of response time requirements on the optimal technology selection in smart energy systems.

Suggested Citation

  • Andiappan, Viknesh, 2022. "Optimization of smart energy systems based on response time and energy storage losses," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017145
    DOI: 10.1016/j.energy.2022.124811
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124811?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominković, D.F. & Dobravec, V. & Jiang, Y. & Nielsen, P.S. & Krajačić, G., 2018. "Modelling smart energy systems in tropical regions," Energy, Elsevier, vol. 155(C), pages 592-609.
    2. Rech, S. & Lazzaretto, A., 2018. "Smart rules and thermal, electric and hydro storages for the optimum operation of a renewable energy system," Energy, Elsevier, vol. 147(C), pages 742-756.
    3. Jantzen, Jan & Kristensen, Michael & Christensen, Toke Haunstrup, 2018. "Sociotechnical transition to smart energy: The case of Samso 1997–2030," Energy, Elsevier, vol. 162(C), pages 20-34.
    4. Mazzoni, Stefano & Ooi, Sean & Nastasi, Benedetto & Romagnoli, Alessandro, 2019. "Energy storage technologies as techno-economic parameters for master-planning and optimal dispatch in smart multi energy systems," Applied Energy, Elsevier, vol. 254(C).
    5. Herc, Luka & Pfeifer, Antun & Duić, Neven & Wang, Fei, 2022. "Economic viability of flexibility options for smart energy systems with high penetration of renewable energy," Energy, Elsevier, vol. 252(C).
    6. Schütz, Thomas & Hu, Xiaolin & Fuchs, Marcus & Müller, Dirk, 2018. "Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods," Energy, Elsevier, vol. 156(C), pages 250-263.
    7. Batas-Bjelic, Ilija & Rajakovic, Nikola & Duic, Neven, 2017. "Smart municipal energy grid within electricity market," Energy, Elsevier, vol. 137(C), pages 1277-1285.
    8. Pfeifer, Antun & Dobravec, Viktorija & Pavlinek, Luka & Krajačić, Goran & Duić, Neven, 2018. "Integration of renewable energy and demand response technologies in interconnected energy systems," Energy, Elsevier, vol. 161(C), pages 447-455.
    9. Sina Steinle & Martin Zimmerlin & Felicitas Mueller & Lukas Held & Michael R. Suriyah & Thomas Leibfried, 2020. "Time-Dependent Flexibility Potential of Heat Pump Systems for Smart Energy System Operation," Energies, MDPI, vol. 13(4), pages 1-13, February.
    10. Lund, Henrik & Østergaard, Poul Alberg & Connolly, David & Mathiesen, Brian Vad, 2017. "Smart energy and smart energy systems," Energy, Elsevier, vol. 137(C), pages 556-565.
    11. Silvente, Javier & Aguirre, Adrián M. & Zamarripa, Miguel A. & Méndez, Carlos A. & Graells, Moisès & Espuña, Antonio, 2015. "Improved time representation model for the simultaneous energy supply and demand management in microgrids," Energy, Elsevier, vol. 87(C), pages 615-627.
    12. Andiappan, Viknesh & Ng, Denny K.S. & Tan, Raymond R., 2017. "Design Operability and Retrofit Analysis (DORA) framework for energy systems," Energy, Elsevier, vol. 134(C), pages 1038-1052.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Abdulnasser, Ghada & Ali, Abdelfatah & Shaaban, Mostafa F. & Mohamed, Essam E.M., 2024. "Optimal resource allocation and operation for smart energy hubs considering hydrogen storage systems and electric vehicles," Energy, Elsevier, vol. 295(C).
    2. Marcelino, C.G. & Leite, G.M.C. & Wanner, E.F. & Jiménez-Fernández, S. & Salcedo-Sanz, S., 2023. "Evaluating the use of a Net-Metering mechanism in microgrids to reduce power generation costs with a swarm-intelligent algorithm," Energy, Elsevier, vol. 266(C).
    3. Zheng Li & Ruoyao Tang & Hanbin Qiu & Linwei Ma, 2023. "Smart Energy Urban Agglomerations in China: The Driving Mechanism, Basic Concepts, and Indicator Evaluation," Sustainability, MDPI, vol. 15(15), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Bartolini, Andrea & Mazzoni, Stefano & Comodi, Gabriele & Romagnoli, Alessandro, 2021. "Impact of carbon pricing on distributed energy systems planning," Applied Energy, Elsevier, vol. 301(C).
    3. Dominik Franjo Dominković & Greg Stark & Bri-Mathias Hodge & Allan Schrøder Pedersen, 2018. "Integrated Energy Planning with a High Share of Variable Renewable Energy Sources for a Caribbean Island," Energies, MDPI, vol. 11(9), pages 1-15, August.
    4. Carli, Raffaele & Dotoli, Mariagrazia & Jantzen, Jan & Kristensen, Michael & Ben Othman, Sarah, 2020. "Energy scheduling of a smart microgrid with shared photovoltaic panels and storage: The case of the Ballen marina in Samsø," Energy, Elsevier, vol. 198(C).
    5. Capone, Martina & Guelpa, Elisa & Verda, Vittorio, 2021. "Multi-objective optimization of district energy systems with demand response," Energy, Elsevier, vol. 227(C).
    6. Vanaga, Ruta & Narbuts, Jānis & Zundāns, Zigmārs & Blumberga, Andra, 2023. "On-site testing of dynamic facade system with the solar energy storage," Energy, Elsevier, vol. 283(C).
    7. Bellocchi, Sara & Manno, Michele & Noussan, Michel & Prina, Matteo Giacomo & Vellini, Michela, 2020. "Electrification of transport and residential heating sectors in support of renewable penetration: Scenarios for the Italian energy system," Energy, Elsevier, vol. 196(C).
    8. Li, Rui & Wang, Wei & Wu, Xuezhi & Tang, Fen & Chen, Zhe, 2019. "Cooperative planning model of renewable energy sources and energy storage units in active distribution systems: A bi-level model and Pareto analysis," Energy, Elsevier, vol. 168(C), pages 30-42.
    9. Mimica, Marko & Krajačić, Goran, 2021. "The Smart Islands method for defining energy planning scenarios on islands," Energy, Elsevier, vol. 237(C).
    10. Laha, Priyanka & Chakraborty, Basab, 2021. "Low carbon electricity system for India in 2030 based on multi-objective multi-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Rigo-Mariani, Rémy & Chea Wae, Sean Ooi & Mazzoni, Stefano & Romagnoli, Alessandro, 2020. "Comparison of optimization frameworks for the design of a multi-energy microgrid," Applied Energy, Elsevier, vol. 257(C).
    12. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    13. Mimica, Marko & Dominković, Dominik F. & Kirinčić, Vedran & Krajačić, Goran, 2022. "Soft-linking of improved spatiotemporal capacity expansion model with a power flow analysis for increased integration of renewable energy sources into interconnected archipelago," Applied Energy, Elsevier, vol. 305(C).
    14. Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    15. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    16. Nastasi, Benedetto & Mazzoni, Stefano & Groppi, Daniele & Romagnoli, Alessandro & Astiaso Garcia, Davide, 2021. "Solar power-to-gas application to an island energy system," Renewable Energy, Elsevier, vol. 164(C), pages 1005-1016.
    17. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    18. Østergaard, Poul Alberg & Jantzen, Jan & Marczinkowski, Hannah Mareike & Kristensen, Michael, 2019. "Business and socioeconomic assessment of introducing heat pumps with heat storage in small-scale district heating systems," Renewable Energy, Elsevier, vol. 139(C), pages 904-914.
    19. Caposciutti, Gianluca & Barontini, Federica & Antonelli, Marco & Tognotti, Leonardo & Desideri, Umberto, 2018. "Experimental investigation on the air excess and air displacement influence on early stage and complete combustion gaseous emissions of a small scale fixed bed biomass boiler," Applied Energy, Elsevier, vol. 216(C), pages 576-587.
    20. Liu, Fang & Mo, Qiu & Yang, Yongwen & Li, Pai & Wang, Shuai & Xu, Yanping, 2022. "A nonlinear model-based dynamic optimal scheduling of a grid-connected integrated energy system," Energy, Elsevier, vol. 243(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.