IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v156y2018icp250-263.html
   My bibliography  Save this article

Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods

Author

Listed:
  • Schütz, Thomas
  • Hu, Xiaolin
  • Fuchs, Marcus
  • Müller, Dirk

Abstract

The design of decentralized energy conversion systems in smart residential microgrids is a challenging optimization problem due to the variety of available generation and storage devices. Common measures to reduce the problem's size and complexity are to reduce modeling accuracy, aggregate multiple loads or change the temporal resolution. However, since these attempts alter the optimization problem and consequently lead to different solutions as intended, this paper presents and analyses a decomposition method for solving the original problem iteratively.

Suggested Citation

  • Schütz, Thomas & Hu, Xiaolin & Fuchs, Marcus & Müller, Dirk, 2018. "Optimal design of decentralized energy conversion systems for smart microgrids using decomposition methods," Energy, Elsevier, vol. 156(C), pages 250-263.
  • Handle: RePEc:eee:energy:v:156:y:2018:i:c:p:250-263
    DOI: 10.1016/j.energy.2018.05.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218308703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.05.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rigo-Mariani, Rémy, 2022. "Optimized time reduction models applied to power and energy systems planning – Comparison with existing methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    2. Timo Kannengießer & Maximilian Hoffmann & Leander Kotzur & Peter Stenzel & Fabian Schuetz & Klaus Peters & Stefan Nykamp & Detlef Stolten & Martin Robinius, 2019. "Reducing Computational Load for Mixed Integer Linear Programming: An Example for a District and an Island Energy System," Energies, MDPI, vol. 12(14), pages 1-27, July.
    3. Xia, Tian & Huang, Wujing & Lu, Xi & Zhang, Ning & Kang, Chongqing, 2020. "Planning district multiple energy systems considering year-round operation," Energy, Elsevier, vol. 213(C).
    4. Ghanaee, Reza & Akbari Foroud, Asghar, 2019. "Enhanced structure and optimal capacity sizing method for turbo-expander based microgrid with simultaneous recovery of cooling and electrical energy," Energy, Elsevier, vol. 170(C), pages 284-304.
    5. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2020. "A near-optimal solution method for coordinated operation planning problem of power- and heat-interchange networks using column generation-based decomposition," Energy, Elsevier, vol. 197(C).
    6. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    7. Fonseca, Juan D. & Commenge, Jean-Marc & Camargo, Mauricio & Falk, Laurent & Gil, Iván D., 2021. "Multi-criteria optimization for the design and operation of distributed energy systems considering sustainability dimensions," Energy, Elsevier, vol. 214(C).
    8. Wakui, Tetsuya & Hashiguchi, Moe & Yokoyama, Ryohei, 2021. "Structural design of distributed energy networks by a hierarchical combination of variable- and constraint-based decomposition methods," Energy, Elsevier, vol. 224(C).
    9. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    10. Wakui, Tetsuya & Hashiguchi, Moe & Sawada, Kento & Yokoyama, Ryohei, 2019. "Two-stage design optimization based on artificial immune system and mixed-integer linear programming for energy supply networks," Energy, Elsevier, vol. 170(C), pages 1228-1248.
    11. Andiappan, Viknesh, 2022. "Optimization of smart energy systems based on response time and energy storage losses," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:156:y:2018:i:c:p:250-263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.