IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v197y2024ics1364032124001436.html
   My bibliography  Save this article

Investigation of the effects of synthetic wind speed parameters and wind speed distribution on system size and cost in hybrid renewable energy system design

Author

Listed:
  • Altin, Cemil

Abstract

The accuracy of wind speed data has an important impact on determining power output from a Hybrid Renewable Energy System including wind turbine. For a better estimation of energy price or payback period, it is crucial to determine both monthly average wind speed values and distribution parameters. Studies evaluating the sensitivity of wind speed distribution parameters concerning the optimal system size are lacking in the literature. This work fills the gap in the literature and for the first time, the effects of wind speed distribution parameters and wind speed distribution on the optimum system are statistically demonstrated. According to this case study, if these parameters are not set correctly, the Cost of Energy may be faulty between −14.024% and +37.804% for the Photovoltaic-Wind-Battery-Inverter system, may be faulty between −19.024% and +97.05% for the Wind-Battery-Inverter system and may be faulty between −56.437% and +65.250% for the Wind-Inverter system. When the default distribution parameters of the HOMER software are used, the errors are −0.609%, −18.30%, −34.215% respectively. This study reveals that in addition to monthly average wind speed values, distribution parameters should be chosen as accurately as possible. The innovative aspect of this work is the statistical presentation of how synthetic wind speed distribution can affect Hybrid Renewable Energy System sizing and at the same time Cost of Energy. Its importance is that it provides more precise results by guiding optimization studies using synthetic meteorological data, which is a popular field of study.

Suggested Citation

  • Altin, Cemil, 2024. "Investigation of the effects of synthetic wind speed parameters and wind speed distribution on system size and cost in hybrid renewable energy system design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001436
    DOI: 10.1016/j.rser.2024.114420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124001436
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. T. M. I. Riayatsyah & T. A. Geumpana & I. M. Rizwanul Fattah & Samsul Rizal & T. M. Indra Mahlia, 2022. "Techno-Economic Analysis and Optimisation of Campus Grid-Connected Hybrid Renewable Energy System Using HOMER Grid," Sustainability, MDPI, vol. 14(13), pages 1-18, June.
    2. Bouendeu, Jean Jacques & Talla Konchou, Franck Armel & Astrid, Medjo Nouadje Brigitte & Elmorshedy, Mahmoud F. & René, Tchinda, 2023. "A systematic techno-enviro-socio-economic design optimization and power quality of hybrid renewable microgrids," Renewable Energy, Elsevier, vol. 218(C).
    3. Hoseinzadeh, Siamak & Astiaso Garcia, Davide & Huang, Lizhen, 2023. "Grid-connected renewable energy systems flexibility in Norway islands’ Decarbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    4. Carapellucci, Roberto & Giordano, Lorena, 2013. "The effect of diurnal profile and seasonal wind regime on sizing grid-connected and off-grid wind power plants," Applied Energy, Elsevier, vol. 107(C), pages 364-376.
    5. Md. Rasel Ahmed & Md. Rokib Hasan & Suharto Al Hasan & Muhammad Aziz & Md. Emdadul Hoque, 2023. "Feasibility Study of the Grid-Connected Hybrid Energy System for Supplying Electricity to Support the Health and Education Sector in the Metropolitan Area," Energies, MDPI, vol. 16(4), pages 1-23, February.
    6. Lin, Xing-Min & Kireeva, Natalia & Timoshin, A.V. & Naderipour, Amirreza & Abdul-Malek, Zulkurnain & Kamyab, Hesam, 2021. "A multi-criteria framework for designing of stand-alone and grid-connected photovoltaic, wind, battery clean energy system considering reliability and economic assessment," Energy, Elsevier, vol. 224(C).
    7. Ciprian Vlad & Marian Barbu & Ramon Vilanova, 2016. "Intelligent Control of a Distributed Energy Generation System Based on Renewable Sources," Sustainability, MDPI, vol. 8(8), pages 1-23, August.
    8. Naderipour, Amirreza & Kamyab, Hesam & Klemeš, Jiří Jaromír & Ebrahimi, Reza & Chelliapan, Shreeshivadasan & Nowdeh, Saber Arabi & Abdullah, Aldrin & Hedayati Marzbali, Massoomeh, 2022. "Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission," Energy, Elsevier, vol. 257(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    2. Tahir, Mustafa & Hu, Sideng & Khan, Tahir & Zhu, Haoqi, 2024. "Multi-energy station design for future electric vehicles: A synergistic approach starting from scratch," Applied Energy, Elsevier, vol. 372(C).
    3. Zhou, Jianguo & Xu, Zhongtian, 2023. "Optimal sizing design and integrated cost-benefit assessment of stand-alone microgrid system with different energy storage employing chameleon swarm algorithm: A rural case in Northeast China," Renewable Energy, Elsevier, vol. 202(C), pages 1110-1137.
    4. Simal, Noelia & Ballestrín, Jesús & Carra, Elena & Marzo, Aitor & Polo, Jesús & Barbero, Javier & Alonso-Montesinos, Joaquín & López, Gabriel, 2024. "Typical solar extinction year at Plataforma Solar de Almería (Spain). Application to thermoelectric solar tower plants," Energy, Elsevier, vol. 296(C).
    5. Dhammawit Paisiripas & Kang-wook Cho & Soo-jin Park, 2024. "Integration of Small Modular Reactors with Renewable Energy for Carbon Neutrality: A Case Study of Phuket, Thailand," Energies, MDPI, vol. 17(22), pages 1-18, November.
    6. Li, Ke & Wen, Jian & Xin, Biping & Zhou, Aimin & Wang, Simin, 2024. "Transient-state modeling and thermodynamic analysis of self-pressurization liquid hydrogen tank considering effect of vacuum multi-layer insulation coupled with vapor-cooled shield," Energy, Elsevier, vol. 286(C).
    7. Elkadeem, Mohamed R. & Kotb, Kotb M. & Abido, Mohamed A. & Hasanien, Hany M. & Atiya, Eman G. & Almakhles, Dhafer & Elmorshedy, Mahmoud F., 2024. "Techno-enviro-socio-economic design and finite set model predictive current control of a grid-connected large-scale hybrid solar/wind energy system: A case study of Sokhna Industrial Zone, Egypt," Energy, Elsevier, vol. 289(C).
    8. Naderipour, Amirreza & Ramtin, Amir Reza & Abdullah, Aldrin & Marzbali, Massoomeh Hedayati & Nowdeh, Saber Arabi & Kamyab, Hesam, 2022. "Hybrid energy system optimization with battery storage for remote area application considering loss of energy probability and economic analysis," Energy, Elsevier, vol. 239(PD).
    9. Amanda S. Hering & Karen Kazor & William Kleiber, 2015. "A Markov-Switching Vector Autoregressive Stochastic Wind Generator for Multiple Spatial and Temporal Scales," Resources, MDPI, vol. 4(1), pages 1-23, February.
    10. Miranda, Rodolfo Farías & Salgado-Herrera, Nadia Maria & Rodríguez-Hernández, Osvaldo & Rodríguez-Rodríguez, Juan Ramon & Robles, Miguel & Ruiz-Robles, Dante & Venegas-Rebollar, Vicente, 2022. "Distributed generation in low-voltage DC systems by wind energy in the Baja California Peninsula, Mexico," Energy, Elsevier, vol. 242(C).
    11. Urbano, Eva M. & Martinez-Viol, Victor & Kampouropoulos, Konstantinos & Romeral, Luis, 2022. "Risk assessment of energy investment in the industrial framework – Uncertainty and Sensitivity Analysis for energy design and operation optimisation," Energy, Elsevier, vol. 239(PA).
    12. Yang, Yu & Liu, Zhiqiang & Xie, Nan & Wang, Jiaqiang & Cui, Yanping & Agbodjan, Yawovi Souley, 2023. "Multi-criteria optimization of multi-energy complementary systems considering reliability, economic and environmental effects," Energy, Elsevier, vol. 269(C).
    13. Yadav, Subhash & Kumar, Pradeep & Kumar, Ashwani, 2024. "Techno-economic assessment of hybrid renewable energy system with multi energy storage system using HOMER," Energy, Elsevier, vol. 297(C).
    14. Abdulaziz Alanazi & Mohana Alanazi, 2023. "Multicriteria Decision-Making for Evaluating Solar Energy Source of Saudi Arabia," Sustainability, MDPI, vol. 15(13), pages 1-37, June.
    15. Zhao, Yi-Bo & Dong, Xiao-Jian & Shen, Jia-Ni & He, Yi-Jun, 2024. "Simultaneous sizing and scheduling optimization for PV-wind-battery hybrid systems with a modified battery lifetime model: A high-resolution analysis in China," Applied Energy, Elsevier, vol. 360(C).
    16. Rania M. Ghoniem & Ali Alahmer & Hegazy Rezk & Samer As’ad, 2023. "Optimal Design and Sizing of Hybrid Photovoltaic/Fuel Cell Electrical Power System," Sustainability, MDPI, vol. 15(15), pages 1-19, August.
    17. Chuang, Ming-Tung & Chang, Shih-Yu & Hsiao, Ta-Chih & Lu, Yun-Ru & Yang, Tsung-Yeh, 2019. "Analyzing major renewable energy sources and power stability in Taiwan by 2030," Energy Policy, Elsevier, vol. 125(C), pages 293-306.
    18. Hou, Guolian & Gong, Linjuan & Hu, Bo & Su, Huilin & Huang, Ting & Huang, Congzhi & Fan, Wei & Zhao, Yuanzhu, 2022. "Application of fast adaptive moth-flame optimization in flexible operation modeling for supercritical unit," Energy, Elsevier, vol. 239(PA).
    19. Irshad, Ahmad Shah & Samadi, Wais Khan & Fazli, Agha Mohammad & Noori, Abdul Ghani & Amin, Ahmad Shah & Zakir, Mohammad Naseer & Bakhtyal, Irfan Ahmad & Karimi, Bashir Ahmad & Ludin, Gul Ahmad & Senjy, 2023. "Resilience and reliable integration of PV-wind and hydropower based 100% hybrid renewable energy system without any energy storage system for inaccessible area electrification," Energy, Elsevier, vol. 282(C).
    20. Natalia Ivaneth Luna Alvarino & Vladimir Sousa Santos & Jairo Ricardo González, 2024. "Design of Photovoltaic Systems in Industrial Electrical Systems Considering Power Quality," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 142-153, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:197:y:2024:i:c:s1364032124001436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.