IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v77y2017icp515-524.html
   My bibliography  Save this article

Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems

Author

Listed:
  • Mohamed, Mohamed A.
  • Eltamaly, Ali M.
  • Alolah, Abdulrahman I.

Abstract

Recently, with the stringent environmental regulations and shortage fossil-fuel reserve, power generation based on renewable energy sources is seen as a promising solution for future generation systems. A combination of these sources with an optimized configuration can face the climate change obstacles, permit better reliability, and reduce the cost of the generated energy. This paper presents a proposed particle swarm optimization (PSO) algorithm for an optimized design of grid-dependent hybrid photovoltaic-wind energy systems. This algorithm uses the actual hourly data of wind speeds, solar radiation, temperature, and electricity demand in a certain location. The PSO algorithm is employed to obtain the minimum cost of the generated energy while matching the electricity supply with the local demand with particular reliability index. The algorithm has been tested by considering a real case study used the actual situation to supply the electricity demand from utility grid at electricity market prices to estimate how significant are the cost saving compared to the actual situation costs. Results showed that the proposed algorithm responds well to changes in the system parameters and variables while providing a reliable sizing solution.

Suggested Citation

  • Mohamed, Mohamed A. & Eltamaly, Ali M. & Alolah, Abdulrahman I., 2017. "Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 515-524.
  • Handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:515-524
    DOI: 10.1016/j.rser.2017.04.048
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117305506
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.048?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kashefi Kaviani, A. & Riahy, G.H. & Kouhsari, SH.M., 2009. "Optimal design of a reliable hydrogen-based stand-alone wind/PV generating system, considering component outages," Renewable Energy, Elsevier, vol. 34(11), pages 2380-2390.
    2. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    3. Kaabeche, A. & Belhamel, M. & Ibtiouen, R., 2011. "Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system," Energy, Elsevier, vol. 36(2), pages 1214-1222.
    4. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    5. Diaf, S. & Notton, G. & Belhamel, M. & Haddadi, M. & Louche, A., 2008. "Design and techno-economical optimization for hybrid PV/wind system under various meteorological conditions," Applied Energy, Elsevier, vol. 85(10), pages 968-987, October.
    6. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    7. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.
    8. Kaldellis, J.K. & Vlachos, G.Th., 2006. "Optimum sizing of an autonomous wind-diesel hybrid system for various representative wind-potential cases," Applied Energy, Elsevier, vol. 83(2), pages 113-132, February.
    9. Malekpour, Ahmad Reza & Niknam, Taher, 2011. "A probabilistic multi-objective daily Volt/Var control at distribution networks including renewable energy sources," Energy, Elsevier, vol. 36(5), pages 3477-3488.
    10. Ucar, Aynur & Balo, Figen, 2009. "Evaluation of wind energy potential and electricity generation at six locations in Turkey," Applied Energy, Elsevier, vol. 86(10), pages 1864-1872, October.
    11. Hu, Yu & Solana, Pablo, 2013. "Optimization of a hybrid diesel-wind generation plant with operational options," Renewable Energy, Elsevier, vol. 51(C), pages 364-372.
    12. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2009. "A wind-PV-battery hybrid power system at Sitakunda in Bangladesh," Energy Policy, Elsevier, vol. 37(9), pages 3659-3664, September.
    13. Ranaboldo, Matteo & Lega, Bruno Domenech & Ferrenbach, David Vilar & Ferrer-Martí, Laia & Moreno, Rafael Pastor & García-Villoria, Alberto, 2014. "Renewable energy projects to electrify rural communities in Cape Verde," Applied Energy, Elsevier, vol. 118(C), pages 280-291.
    14. Hakimi, S.M. & Moghaddas-Tafreshi, S.M., 2009. "Optimal sizing of a stand-alone hybrid power system via particle swarm optimization for Kahnouj area in south-east of Iran," Renewable Energy, Elsevier, vol. 34(7), pages 1855-1862.
    15. Mohamed A Mohamed & Ali M Eltamaly & Abdulrahman I Alolah, 2016. "PSO-Based Smart Grid Application for Sizing and Optimization of Hybrid Renewable Energy Systems," PLOS ONE, Public Library of Science, vol. 11(8), pages 1-22, August.
    16. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    17. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Majed A. Alotaibi & Ali M. Eltamaly, 2021. "A Smart Strategy for Sizing of Hybrid Renewable Energy System to Supply Remote Loads in Saudi Arabia," Energies, MDPI, vol. 14(21), pages 1-24, October.
    2. Gelchu, Milky Ali & Ehnberg, Jimmy & Shiferaw, Dereje & Ahlgren, Erik O., 2023. "Impact of demand-side management on the sizing of autonomous solar PV-based mini-grids," Energy, Elsevier, vol. 278(PA).
    3. Maheri, Alireza & Unsal, Ibrahim & Mahian, Omid, 2022. "Multiobjective optimisation of hybrid wind-PV-battery-fuel cell-electrolyser-diesel systems: An integrated configuration-size formulation approach," Energy, Elsevier, vol. 241(C).
    4. Mauricio Castillo & Ricardo Soto & Broderick Crawford & Carlos Castro & Rodrigo Olivares, 2021. "A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models," Mathematics, MDPI, vol. 9(12), pages 1-21, June.
    5. Li, Nianqi & Klemeš, Jiří Jaromír & Sunden, Bengt & Wu, Zan & Wang, Qiuwang & Zeng, Min, 2022. "Heat exchanger network synthesis considering detailed thermal-hydraulic performance: Methods and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    6. Singh, Kuljeet & Hachem-Vermette, Caroline, 2021. "Economical energy resource planning to promote sustainable urban design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    7. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    8. Naderipour, Amirreza & Kamyab, Hesam & Klemeš, Jiří Jaromír & Ebrahimi, Reza & Chelliapan, Shreeshivadasan & Nowdeh, Saber Arabi & Abdullah, Aldrin & Hedayati Marzbali, Massoomeh, 2022. "Optimal design of hybrid grid-connected photovoltaic/wind/battery sustainable energy system improving reliability, cost and emission," Energy, Elsevier, vol. 257(C).
    9. Huang, Jing & Boland, John & Liu, Weidong & Xu, Chang & Zang, Haixiang, 2018. "A decision-making tool for determination of storage capacity in grid-connected PV systems," Renewable Energy, Elsevier, vol. 128(PA), pages 299-304.
    10. Usama Khaled & Ali M. Eltamaly & Abderrahmane Beroual, 2017. "Optimal Power Flow Using Particle Swarm Optimization of Renewable Hybrid Distributed Generation," Energies, MDPI, vol. 10(7), pages 1-14, July.
    11. Tri-Hai Nguyen & Luong Vuong Nguyen & Jason J. Jung & Israel Edem Agbehadji & Samuel Ofori Frimpong & Richard C. Millham, 2020. "Bio-Inspired Approaches for Smart Energy Management: State of the Art and Challenges," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    12. Mohamed A. Mohamed & Seyedali Mirjalili & Udaya Dampage & Saleh H. Salmen & Sami Al Obaid & Andres Annuk, 2021. "A Cost-Efficient-Based Cooperative Allocation of Mining Devices and Renewable Resources Enhancing Blockchain Architecture," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    13. Adoum Abdoulaye, Mahamat & Waita, Sebastian & Wabuge Wekesa, Cyrus & Mwabora, Julius Mwakondo, 2024. "Optimal sizing of an off-grid and grid-connected hybrid photovoltaic-wind system with battery and fuel cell storage system: A techno-economic, environmental, and social assessment," Applied Energy, Elsevier, vol. 365(C).
    14. Sadeghi, Delnia & Ahmadi, Seyed Ehsan & Amiri, Nima & Satinder, & Marzband, Mousa & Abusorrah, Abdullah & Rawa, Muhyaddin, 2022. "Designing, optimizing and comparing distributed generation technologies as a substitute system for reducing life cycle costs, CO2 emissions, and power losses in residential buildings," Energy, Elsevier, vol. 253(C).
    15. Senthilkumar Subramanian & Chandramohan Sankaralingam & Rajvikram Madurai Elavarasan & Raghavendra Rajan Vijayaraghavan & Kannadasan Raju & Lucian Mihet-Popa, 2021. "An Evaluation on Wind Energy Potential Using Multi-Objective Optimization Based Non-Dominated Sorting Genetic Algorithm III," Sustainability, MDPI, vol. 13(1), pages 1-29, January.
    16. Mohamed, Mohamed A. & Zaki Diab, Ahmed A. & Rezk, Hegazy, 2019. "Partial shading mitigation of PV systems via different meta-heuristic techniques," Renewable Energy, Elsevier, vol. 130(C), pages 1159-1175.
    17. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    2. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    3. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    4. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    5. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    6. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    7. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    8. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    9. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    10. Myeong Jin Ko & Yong Shik Kim & Min Hee Chung & Hung Chan Jeon, 2015. "Multi-Objective Optimization Design for a Hybrid Energy System Using the Genetic Algorithm," Energies, MDPI, vol. 8(4), pages 1-26, April.
    11. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    12. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2013. "A review of photovoltaic systems size optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 454-465.
    13. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.
    14. Asma Mohamad Aris & Bahman Shabani, 2015. "Sustainable Power Supply Solutions for Off-Grid Base Stations," Energies, MDPI, vol. 8(10), pages 1-38, September.
    15. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    16. González, Arnau & Riba, Jordi-Roger & Rius, Antoni & Puig, Rita, 2015. "Optimal sizing of a hybrid grid-connected photovoltaic and wind power system," Applied Energy, Elsevier, vol. 154(C), pages 752-762.
    17. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    18. Azaza, Maher & Wallin, Fredrik, 2017. "Multi objective particle swarm optimization of hybrid micro-grid system: A case study in Sweden," Energy, Elsevier, vol. 123(C), pages 108-118.
    19. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N., 2014. "Hybrid renewable energy systems for off-grid electric power: Review of substantial issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 527-539.
    20. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:77:y:2017:i:c:p:515-524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.