IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v147y2015icp104-116.html
   My bibliography  Save this article

Progress in reliability of fast reactor operation and new trends to increased inherent safety

Author

Listed:
  • Merk, Bruno
  • Stanculescu, Alexander
  • Chellapandi, Perumal
  • Hill, Robert

Abstract

The reasons for the renewed interest in fast reactors and an overview of the progress in sodium cooled fast reactor operation in the last ten years are given. The excellent operational performance of sodium cooled fast reactors in this period is highlighted as a sound basis for the development of new fast reactors. The operational performance of the BN-600 is compared and evaluated against the performance of German light water reactors to assess the reliability. The relevance of feedback effects for safe reactor design is described, and a new method for the enhancement of feedback effects in fast reactors is proposed. Experimental reactors demonstrating the inherent safety of advanced sodium cooled fast reactor designs are described and the potential safety improvements resulting from the use of fine distributed moderating material are discussed.

Suggested Citation

  • Merk, Bruno & Stanculescu, Alexander & Chellapandi, Perumal & Hill, Robert, 2015. "Progress in reliability of fast reactor operation and new trends to increased inherent safety," Applied Energy, Elsevier, vol. 147(C), pages 104-116.
  • Handle: RePEc:eee:appene:v:147:y:2015:i:c:p:104-116
    DOI: 10.1016/j.apenergy.2015.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915002007
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mourogov, V. & Juhn, P.E. & Kupitz, J. & Rineiskii, A., 1998. "Liquid-metal-cooled-fast reactor (LMFR) development and IAEA activities," Energy, Elsevier, vol. 23(7), pages 637-648.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiden Peakman & Bruno Merk, 2019. "The Role of Nuclear Power in Meeting Current and Future Industrial Process Heat Demands," Energies, MDPI, vol. 12(19), pages 1-16, September.
    2. Bruno Merk & Mark Bankhead & Dzianis Litskevich & Robert Gregg & Aiden Peakman & Craig Shearer, 2018. "On a Roadmap for Future Industrial Nuclear Reactor Core Simulation in the U.K. to Support the Nuclear Renaissance," Energies, MDPI, vol. 11(12), pages 1-18, December.
    3. Wuseong You & Ser Gi Hong, 2017. "An Advanced Sodium-Cooled Fast Reactor Core Concept Using Uranium-Free Metallic Fuels for Maximizing TRU Burning Rate," Sustainability, MDPI, vol. 9(12), pages 1-21, December.
    4. Bruno Merk & Anna Detkina & Dzianis Litskevich & Seddon Atkinson & Gregory Cartland-Glover, 2020. "The Interplay between Breeding and Thermal Feedback in a Molten Chlorine Fast Reactor," Energies, MDPI, vol. 13(7), pages 1-15, April.
    5. Bruno Merk & Dzianis Litskevich & Karl R. Whittle & Mark Bankhead & Richard J. Taylor & Dan Mathers, 2017. "On a Long Term Strategy for the Success of Nuclear Power," Energies, MDPI, vol. 10(7), pages 1-21, June.
    6. Olumayegun, Olumide & Wang, Meihong & Kelsall, Greg, 2017. "Thermodynamic analysis and preliminary design of closed Brayton cycle using nitrogen as working fluid and coupled to small modular Sodium-cooled fast reactor (SM-SFR)," Applied Energy, Elsevier, vol. 191(C), pages 436-453.
    7. Bruno Merk & Anna Detkina & Dzianis Litskevich & Omid Noori-kalkhoran & Lakshay Jain & Gregory Cartland-Glover, 2022. "A HELIOS-Based Dynamic Salt Clean-Up Study Analysing the Effects of a Plutonium-Based Initial Core for iMAGINE," Energies, MDPI, vol. 15(24), pages 1-17, December.
    8. Bruno Merk & Anna Detkina & Seddon Atkinson & Dzianis Litskevich & Gregory Cartland-Glover, 2019. "Evaluation of the Breeding Performance of a NaCl-UCl-Based Reactor System," Energies, MDPI, vol. 12(20), pages 1-18, October.
    9. Bruno Merk & Anna Detkina & Dzianis Litskevich & Maulik Patel & Omid Noori-kalkhoran & Gregory Cartland-Glover & Olga Efremova & Mark Bankhead & Claude Degueldre, 2022. "A First Step towards Zero Nuclear Waste—Advanced Strategic Thinking in Light of iMAGINE," Energies, MDPI, vol. 15(19), pages 1-21, September.
    10. Bruno Merk & Dzianis Litskevich & Anna Detkina & Omid Noori-kalkhoran & Lakshay Jain & Elfriede Derrer-Merk & Daliya Aflyatunova & Greg Cartland-Glover, 2023. "iMAGINE—Visions, Missions, and Steps for Successfully Delivering the Nuclear System of the 21st Century," Energies, MDPI, vol. 16(7), pages 1-16, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yingjie & Wang, Mingjun & Jia, Kang & Tian, Wenxi & Qiu, Suizheng & Su, Guanghui, 2022. "Thermal fatigue analysis of structures subjected to liquid metal jets at different temperatures in the Gen-IV nuclear energy system," Energy, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:147:y:2015:i:c:p:104-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.