IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v291y2021ics0306261921003068.html
   My bibliography  Save this article

5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits

Author

Listed:
  • Ferreira, Victor J.
  • Wolff, Deidre
  • Hornés, Aitor
  • Morata, Alex
  • Torrell, M.
  • Tarancón, Albert
  • Corchero, Cristina

Abstract

3D printing technologies are being called on to revolutionize the manufacturing industry of the energy sector, especially when involving functional materials and complete devices. These additive manufacturing technologies show competitive advantages over conventional processes, however only a few studies have assessed their environmental implications. In this work, the environmental performance of a Solid Oxide Fuel Cell stack produced using a novel 3D printing approach is conducted for the first time using Life Cycle Assessment. In addition, a comparative study with conventional manufacturing methods is carried out. The results reveal that the production of the 3D printing materials has the highest environmental impact (between 50% and 98%) in half of the categories studied. In contrast, the end-of-life stage represents less than 1% of the total impact. End-of-life scenarios are also presented and discussed, indicating that a recycling rate of 70% for Nickel and YSZ materials performs better than the defined landfill and incineration disposal scenarios. Furthermore, 3D printing shows the best overall environmental performance compared to other conventional methods. The main improvement is seen in the material production stage, where a savings ranging from 37% to 97% (depending on the category analysed) is observed. This is mainly due to the use of a ceramic material for the interconnects instead of Chromium-based alloys used in a more conventional approach. Finally, it was observed that the energy required for 3D printing in the manufacturing stage is a sensible parameter to the environmental performance of the SOFC 3D printing technology.

Suggested Citation

  • Ferreira, Victor J. & Wolff, Deidre & Hornés, Aitor & Morata, Alex & Torrell, M. & Tarancón, Albert & Corchero, Cristina, 2021. "5 kW SOFC stack via 3D printing manufacturing: An evaluation of potential environmental benefits," Applied Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003068
    DOI: 10.1016/j.apenergy.2021.116803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Subotić, Vanja & Baldinelli, Arianna & Barelli, Linda & Scharler, Robert & Pongratz, Gernot & Hochenauer, Christoph & Anca-Couce, Andrés, 2019. "Applicability of the SOFC technology for coupling with biomass-gasifier systems: Short- and long-term experimental study on SOFC performance and degradation behaviour," Applied Energy, Elsevier, vol. 256(C).
    2. Mahmud, L.S. & Muchtar, A. & Somalu, M.R., 2017. "Challenges in fabricating planar solid oxide fuel cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 105-116.
    3. Coman, V. & Robotin, B. & Ilea, P., 2013. "Nickel recovery/removal from industrial wastes: A review," Resources, Conservation & Recycling, Elsevier, vol. 73(C), pages 229-238.
    4. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2015. "Environmental impact assessment of a solid-oxide fuel-cell-based combined-heat-and-power-generation system," Energy, Elsevier, vol. 79(C), pages 455-466.
    5. Timurkutluk, Bora & Timurkutluk, Cigdem & Mat, Mahmut D. & Kaplan, Yuksel, 2016. "A review on cell/stack designs for high performance solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1101-1121.
    6. Buonomano, Annamaria & Calise, Francesco & d’Accadia, Massimo Dentice & Palombo, Adolfo & Vicidomini, Maria, 2015. "Hybrid solid oxide fuel cells–gas turbine systems for combined heat and power: A review," Applied Energy, Elsevier, vol. 156(C), pages 32-85.
    7. Zhichao Liu & Qiuhong Jiang & Fuda Ning & Hoyeol Kim & Weilong Cong & Changxue Xu & Hong-chao Zhang, 2018. "Investigation of Energy Requirements and Environmental Performance for Additive Manufacturing Processes," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    8. Stropnik, R. & Sekavčnik, M. & Ferriz, A.M. & Mori, M., 2018. "Reducing environmental impacts of the ups system based on PEM fuel cell with circular economy," Energy, Elsevier, vol. 165(PB), pages 824-835.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khaled M. A. Salim & Ruhanita Maelah & Hawa Hishamuddin & Amizawati Mohd Amir & Mohd Nizam Ab Rahman, 2022. "Two Decades of Life Cycle Sustainability Assessment of Solid Oxide Fuel Cells (SOFCs): A Review," Sustainability, MDPI, vol. 14(19), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdelkareem, Mohammad Ali & Tanveer, Waqas Hassan & Sayed, Enas Taha & Assad, M. El Haj & Allagui, Anis & Cha, S.W., 2019. "On the technical challenges affecting the performance of direct internal reforming biogas solid oxide fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 361-375.
    2. Lee, Young Duk & Ahn, Kook Young & Morosuk, Tatiana & Tsatsaronis, George, 2018. "Exergetic and exergoeconomic evaluation of an SOFC-Engine hybrid power generation system," Energy, Elsevier, vol. 145(C), pages 810-822.
    3. Mei, Shuxue & Lu, Xiaorui & Zhu, Yu & Wang, Shixue, 2021. "Thermodynamic assessment of a system configuration strategy for a cogeneration system combining SOFC, thermoelectric generator, and absorption heat pump," Applied Energy, Elsevier, vol. 302(C).
    4. Tanveer, Waqas Hassan & Abdelkareem, Mohammad Ali & Kolosz, Ben W. & Rezk, Hegazy & Andresen, John & Cha, Suk Won & Sayed, Enas Taha, 2021. "The role of vacuum based technologies in solid oxide fuel cell development to utilize industrial waste carbon for power production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    5. Orlando Corigliano & Leonardo Pagnotta & Petronilla Fragiacomo, 2022. "On the Technology of Solid Oxide Fuel Cell (SOFC) Energy Systems for Stationary Power Generation: A Review," Sustainability, MDPI, vol. 14(22), pages 1-73, November.
    6. Wu, Xiao-long & Xu, Yuan-wu & Zhao, Dong-qi & Zhong, Xiao-bo & Li, Dong & Jiang, Jianhua & Deng, Zhonghua & Fu, Xiaowei & Li, Xi, 2020. "Extended-range electric vehicle-oriented thermoelectric surge control of a solid oxide fuel cell system," Applied Energy, Elsevier, vol. 263(C).
    7. Kim, Young Sang & Lee, Young Duk & Ahn, Kook Young, 2020. "System integration and proof-of-concept test results of SOFC–engine hybrid power generation system," Applied Energy, Elsevier, vol. 277(C).
    8. Wang, Chuang & Liu, Mingkun & Li, Zengqun & Xing, Ziwen & Shu, Yue, 2023. "Performance improvement of twin-screw air expander used in PEMFC systems by two-phase expansion," Energy, Elsevier, vol. 273(C).
    9. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    10. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    11. Anca-Couce, A. & Hochenauer, C. & Scharler, R., 2021. "Bioenergy technologies, uses, market and future trends with Austria as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    14. Pan, Zehua & Liu, Qinglin & Zhang, Lan & Zhou, Juan & Zhang, Caizhi & Chan, Siew Hwa, 2017. "Experimental and thermodynamic study on the performance of water electrolysis by solid oxide electrolyzer cells with Nb-doped Co-based perovskite anode," Applied Energy, Elsevier, vol. 191(C), pages 559-567.
    15. Mehrabian, M.J. & Khoshgoftar Manesh, M.H., 2023. "4E, risk, diagnosis, and availability evaluation for optimal design of a novel biomass-solar-wind driven polygeneration system," Renewable Energy, Elsevier, vol. 219(P2).
    16. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    17. Kim, Jaehyun & Kim, Yongtae & Choi, Wonjae & Ahn, Kook Young & Song, Han Ho, 2020. "Analysis on the operating performance of 5-kW class solid oxide fuel cell-internal combustion engine hybrid system using spark-assisted ignition," Applied Energy, Elsevier, vol. 260(C).
    18. Yang, Fei & Gu, Jianmin & Ye, Luhan & Zhang, Zuoxiang & Rao, Gaofeng & Liang, Yachun & Wen, Kechun & Zhao, Jiyun & Goodenough, John B. & He, Weidong, 2016. "Justifying the significance of Knudsen diffusion in solid oxide fuel cells," Energy, Elsevier, vol. 95(C), pages 242-246.
    19. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    20. Xu, Haoran & Chen, Bin & Tan, Peng & Zhang, Houcheng & Yuan, Jinliang & Liu, Jiang & Ni, Meng, 2017. "Performance improvement of a direct carbon solid oxide fuel cell system by combining with a Stirling cycle," Energy, Elsevier, vol. 140(P1), pages 979-987.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.