IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipcs036054422201341x.html
   My bibliography  Save this article

Structure regulation and influence of comb copolymers as pour point depressants on low temperature fluidity of diesel fuel

Author

Listed:
  • Ren, Feihe
  • Lu, Yilin
  • Sun, Bin
  • Wang, Chenchen
  • Yan, Jincan
  • Lin, Hualin
  • Xue, Yuan
  • Han, Sheng

Abstract

Adding pour point depressants (PPDs) is a simple and efficient method to remediate the low temperature fluidity of diesel, however, the depressive effects of these polymeric PPDs are always affected by their molecular structure and polarity. In this work, to obtain high-efficiency PPDs for diesel, a series of comb copolymers of tetradecyl methacrylate-benzalacetone (C14MC-BAE), tetradecyl methacrylate-methyl cinnamate (C14MC-MCA) and tetradecyl methacrylate-ethyl 3-benzoylacrylate (C14MC-EBLA) were synthesized by the regulation of molecular structure. The depressive effects of these copolymers on the cold filter plugging point (CFPP) and solid point (SP) of diesel were studied and compared with that in previous reports. Results showed monomers with carbonyl group closer to benzene ring in side chain have better inhibition. As the mole ratio of monomer up to 9:1, these PPDs had the best depressive effect on CFPP and SP of diesel. Thereinto, C14MC-EBLA (9:1) at 2000 ppm decreased the CFPP and SP of diesel by 12 °C and 15 °C, respectively. Furthermore, the morphology and crystallization behavior of wax crystals in diesel before and after adding PPDs were analyzed by polarizing optical microscope, differential scanning calorimeter and viscosity-temperature curves.

Suggested Citation

  • Ren, Feihe & Lu, Yilin & Sun, Bin & Wang, Chenchen & Yan, Jincan & Lin, Hualin & Xue, Yuan & Han, Sheng, 2022. "Structure regulation and influence of comb copolymers as pour point depressants on low temperature fluidity of diesel fuel," Energy, Elsevier, vol. 254(PC).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pc:s036054422201341x
    DOI: 10.1016/j.energy.2022.124438
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422201341X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124438?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quan, Hongping & Li, Pengfei & Duan, Wenmeng & Chen, Liao & Xing, Langman, 2019. "A series of methods for investigating the effect of a flow improver on the asphaltene and resin of crude oil," Energy, Elsevier, vol. 187(C).
    2. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2017. "Harnessing the synergies between lipid-based crystallization modifiers and a polymer pour point depressant to improve pour point of biodiesel," Energy, Elsevier, vol. 120(C), pages 895-906.
    3. Cao, Leichang & Wang, Jieni & Liu, Kuojin & Han, Sheng, 2014. "Ethyl acetoacetate: A potential bio-based diluent for improving the cold flow properties of biodiesel from waste cooking oil," Applied Energy, Elsevier, vol. 114(C), pages 18-21.
    4. Serrano, Marta & Oliveros, Rubén & Sánchez, Marcos & Moraschini, Andrea & Martínez, Mercedes & Aracil, José, 2014. "Influence of blending vegetable oil methyl esters on biodiesel fuel properties: Oxidative stability and cold flow properties," Energy, Elsevier, vol. 65(C), pages 109-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Bowen & Sun, Bin & Cui, Lulu & Chen, Jiahao & Chen, Xiaomin & Li, Xinyue & Wang, Zhongcheng & Han, Sheng & Xue, Yuan, 2023. "Evaluation of the star anise extract as a natural cold flow improver for enhancing the cold flow properties of diesel fuel," Renewable Energy, Elsevier, vol. 215(C).
    2. Cui, Lulu & Li, Xin & Ren, Feihe & Lin, Hualin & Han, Sheng, 2024. "A novel pour point depressant with diesel cold-flow properties: Performance evaluation of benzene-containing ternary copolymers," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Lulu & Li, Xin & Ren, Feihe & Lin, Hualin & Han, Sheng, 2024. "A novel pour point depressant with diesel cold-flow properties: Performance evaluation of benzene-containing ternary copolymers," Energy, Elsevier, vol. 288(C).
    2. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    3. Sierra-Cantor, Jonathan Fabián & Guerrero-Fajardo, Carlos Alberto, 2017. "Methods for improving the cold flow properties of biodiesel with high saturated fatty acids content: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 774-790.
    4. Bateni, Hamed & Karimi, Keikhosro & Zamani, Akram & Benakashani, Fatemeh, 2014. "Castor plant for biodiesel, biogas, and ethanol production with a biorefinery processing perspective," Applied Energy, Elsevier, vol. 136(C), pages 14-22.
    5. Zhang, Xiaolei & Yan, Song & Tyagi, Rajeshwar D. & Surampalli, RaoY. & Valéro, Jose R., 2014. "Wastewater sludge as raw material for microbial oils production," Applied Energy, Elsevier, vol. 135(C), pages 192-201.
    6. Mahdavifar, Mehdi & Roozshenas, Ali Akbar & Miri, Rohaldin, 2023. "Microfluidic experiments and numerical modeling of pore-scale Asphaltene deposition: Insights and predictive capabilities," Energy, Elsevier, vol. 283(C).
    7. Lyu, Yang & Huang, Qiyu, 2023. "Flow characteristics of heavy oil-water flow during high water-content cold transportation," Energy, Elsevier, vol. 262(PA).
    8. Fazal, M.A. & Jakeria, M.R. & Haseeb, A.S.M.A. & Rubaiee, Saeed, 2017. "Effect of antioxidants on the stability and corrosiveness of palm biodiesel upon exposure of different metals," Energy, Elsevier, vol. 135(C), pages 220-226.
    9. Yusuff, Adeyinka S. & Bhonsle, Aman K. & Bangwal, Dinesh P. & Atray, Neeraj, 2021. "Development of a barium-modified zeolite catalyst for biodiesel production from waste frying oil: Process optimization by design of experiment," Renewable Energy, Elsevier, vol. 177(C), pages 1253-1264.
    10. Go, Alchris Woo & Tran Nguyen, Phuong Lan & Huynh, Lien Huong & Liu, Ying-Tsung & Sutanto, Sylviana & Ju, Yi-Hsu, 2014. "Catalyst free esterification of fatty acids with methanol under subcritical condition," Energy, Elsevier, vol. 70(C), pages 393-400.
    11. Fernandes, David M. & Squissato, André L. & Lima, Alexandre F. & Richter, Eduardo M. & Munoz, Rodrigo A.A., 2019. "Corrosive character of Moringa oleifera Lam biodiesel exposed to carbon steel under simulated storage conditions," Renewable Energy, Elsevier, vol. 139(C), pages 1263-1271.
    12. Cao, Leichang & Zhang, Shicheng, 2015. "Production and characterization of biodiesel derived from Hodgsonia macrocarpa seed oil," Applied Energy, Elsevier, vol. 146(C), pages 135-140.
    13. Pradhan, Debalaxmi & Bendu, Harisankar & Singh, R.K. & Murugan, S., 2017. "Mahua seed pyrolysis oil blends as an alternative fuel for light-duty diesel engines," Energy, Elsevier, vol. 118(C), pages 600-612.
    14. Rafael R. Maes & Geert Potters & Erik Fransen & Jeroen Geuens & Rowan Van Schaeren & Silvia Lenaerts, 2023. "Can We Find an Optimal Fatty Acid Composition of Biodiesel in Order to Improve Oxidation Stability?," Sustainability, MDPI, vol. 15(13), pages 1-10, June.
    15. Ong, Hwai Chyuan & Masjuki, H.H. & Mahlia, T.M.I. & Silitonga, A.S. & Chong, W.T. & Yusaf, Talal, 2014. "Engine performance and emissions using Jatropha curcas, Ceiba pentandra and Calophyllum inophyllum biodiesel in a CI diesel engine," Energy, Elsevier, vol. 69(C), pages 427-445.
    16. Sorate, Kamalesh A. & Bhale, Purnanand V., 2015. "Biodiesel properties and automotive system compatibility issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 777-798.
    17. Mohanan, Athira & Bouzidi, Laziz & Narine, Suresh S., 2016. "Mitigating crystallization of saturated FAMEs in biodiesel 6: The binary phase behavior of 1, 2-dioleoyl-3-stearoyl sn-glycerol – Methyl stearate," Energy, Elsevier, vol. 100(C), pages 273-284.
    18. Lyu, Yang & Huang, Qiyu & Liu, Luoqian & Zhang, Dongxu & Xue, Huiyong & Zhang, Fuqiang & Zhang, Hanwen & Li, Rongbin & Wang, Qiuchen, 2022. "Experimental and molecular dynamics simulation investigations of adhesion in heavy oil/water/pipeline wall systems during cold transportation," Energy, Elsevier, vol. 250(C).
    19. Nadir Yilmaz & Alpaslan Atmanli & Matthew J. Hall & Francisco M. Vigil, 2022. "Determination of the Optimum Blend Ratio of Diesel, Waste Oil Derived Biodiesel and 1-Pentanol Using the Response Surface Method," Energies, MDPI, vol. 15(14), pages 1-16, July.
    20. Mohanan, Athira & Bouzidi, Laziz & Li, Shaojun & Narine, Suresh S., 2016. "Mitigating crystallization of saturated fames in biodiesel: 1. Lowering crystallization temperatures via addition of metathesized soybean oil," Energy, Elsevier, vol. 96(C), pages 335-345.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pc:s036054422201341x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.