IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i22p4268-d285083.html
   My bibliography  Save this article

Experimental Study of Sand Production during Depressurization Exploitation in Hydrate Silty-Clay Sediments

Author

Listed:
  • Jingsheng Lu

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou 510075, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Dongliang Li

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Yong He

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Lingli Shi

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Deqing Liang

    (Key Laboratory of Gas Hydrate, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
    Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    Guangzhou Center for Gas Hydrate Research, Chinese Academy of Sciences, Guangzhou 510640, China)

  • Youming Xiong

    (State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China)

Abstract

Silty-clay reservoirs are a weak point in sand production and sand control studies due to their low economy. However, China’s marine natural gas hydrates (NGH) mostly exist in silty-clay sediments, which restrict the sustainable and efficient development of NGH. In order to study the sand production of hydrate silty-clay sediments, hydrate production experiments in vertical wells and horizontal wells were carried out using a self-developed hydrate sand production and sand control simulation device. The results showed a great difference between the hydrate silty-clay sediments and hydrate sand sediments. The significant differences in production pressure and production temperature between the different layers indicated the low permeability and low heterogeneity of the hydrate silty-clay sediments. The sliding settlement of the overall depression in the horizontal well and overall subsidence in the vertical well of the hydrate silty-clay reservoir would easily lead to silty-clay flow and large-scale sand production. When water rates decreased, the property of “silty-clay sediment filtration and wall building” was found, which formed a “mud cake” around the wellbore. The good strength of adhesion and fracture permeability of the “mud cake” provided ideas for reservoir reformation. This study further discusses sand production and sediment reformation in hydrate silty-clay sediments.

Suggested Citation

  • Jingsheng Lu & Dongliang Li & Yong He & Lingli Shi & Deqing Liang & Youming Xiong, 2019. "Experimental Study of Sand Production during Depressurization Exploitation in Hydrate Silty-Clay Sediments," Energies, MDPI, vol. 12(22), pages 1-14, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4268-:d:285083
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/22/4268/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/22/4268/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dongliang Li & Qi Wu & Zhe Wang & Jingsheng Lu & Deqing Liang & Xiaosen Li, 2018. "Tri-Axial Shear Tests on Hydrate-Bearing Sediments during Hydrate Dissociation with Depressurization," Energies, MDPI, vol. 11(7), pages 1-12, July.
    2. Li, Xiao-Sen & Yang, Bo & Zhang, Yu & Li, Gang & Duan, Li-Ping & Wang, Yi & Chen, Zhao-Yang & Huang, Ning-Sheng & Wu, Hui-Jie, 2012. "Experimental investigation into gas production from methane hydrate in sediment by depressurization in a novel pilot-scale hydrate simulator," Applied Energy, Elsevier, vol. 93(C), pages 722-732.
    3. Jingsheng Lu & Youming Xiong & Dongliang Li & Xiaodong Shen & Qi Wu & Deqing Liang, 2018. "Experimental Investigation of Characteristics of Sand Production in Wellbore during Hydrate Exploitation by the Depressurization Method," Energies, MDPI, vol. 11(7), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiao-Yan & Hu, Heng-Qi & Wang, Yi & Li, Xiao-Sen, 2022. "Experimental study of gas-liquid-sand production behaviors during gas hydrates dissociation with sand control screen," Energy, Elsevier, vol. 254(PB).
    2. Jung-Tae Kim & Chul-Whan Kang & Ah-Ram Kim & Joo Yong Lee & Gye-Chun Cho, 2021. "Effect of Permeability on Hydrate-Bearing Sediment Productivity and Stability in Ulleung Basin, East Sea, South Korea," Energies, MDPI, vol. 14(6), pages 1-16, March.
    3. Zhu, Huixing & Xu, Tianfu & Xin, Xin & Yuan, Yilong & Feng, Guanhong, 2022. "Numerical investigation of the three-phase layer production performance of an offshore natural gas hydrate trial production," Energy, Elsevier, vol. 257(C).
    4. He, Juan & Li, Xiaosen & Chen, Zhaoyang & Huang, Xiaoliang & Shen, Pengfei, 2023. "Effect of heterogeneous hydrate distribution on hydrate production under different hole combinations," Energy, Elsevier, vol. 283(C).
    5. Jin, Guangrong & Liu, Jie & Su, Zheng & Feng, Chuangji & Cheng, Sanshan & Zhai, Haizhen & Liu, Lihua, 2024. "Gas production from a promising reservoir of the hydrate with associated and shallow gas layers in the low permeable sediments," Energy, Elsevier, vol. 295(C).
    6. Li, Xiaodong & Wan, Yizhao & Lei, Gang & Sun, Jiaxin & Cheng, Wan & Dou, Xiaofeng & Zhao, Yingjie & Ning, Fulong, 2024. "Numerical investigation of gas and sand production from hydrate-bearing sediments by incorporating sand migration based on IMPES method," Energy, Elsevier, vol. 288(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu, 2018. "Influence of well pattern on gas recovery from methane hydrate reservoir by large scale experimental investigation," Energy, Elsevier, vol. 152(C), pages 34-45.
    2. Obara, Shin'ya & Kikuchi, Yoshinobu & Ishikawa, Kyosuke & Kawai, Masahito & Yoshiaki, Kashiwaya, 2015. "Development of a compound energy system for cold region houses using small-scale natural gas cogeneration and a gas hydrate battery," Energy, Elsevier, vol. 85(C), pages 280-295.
    3. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    4. Wang, Yi & Li, Xiao-Sen & Li, Gang & Zhang, Yu & Li, Bo & Chen, Zhao-Yang, 2013. "Experimental investigation into methane hydrate production during three-dimensional thermal stimulation with five-spot well system," Applied Energy, Elsevier, vol. 110(C), pages 90-97.
    5. Yin, Zhenyuan & Huang, Li & Linga, Praveen, 2019. "Effect of wellbore design on the production behaviour of methane hydrate-bearing sediments induced by depressurization," Applied Energy, Elsevier, vol. 254(C).
    6. Jing-Chun Feng & Xiao-Sen Li & Gang Li & Bo Li & Zhao-Yang Chen & Yi Wang, 2014. "Numerical Investigation of Hydrate Dissociation Performance in the South China Sea with Different Horizontal Well Configurations," Energies, MDPI, vol. 7(8), pages 1-22, July.
    7. Li, Xiaodong & Wan, Yizhao & Lei, Gang & Sun, Jiaxin & Cheng, Wan & Dou, Xiaofeng & Zhao, Yingjie & Ning, Fulong, 2024. "Numerical investigation of gas and sand production from hydrate-bearing sediments by incorporating sand migration based on IMPES method," Energy, Elsevier, vol. 288(C).
    8. Wang, Yi & Feng, Jing-Chun & Li, Xiao-Sen & Zhang, Yu & Li, Gang, 2016. "Large scale experimental evaluation to methane hydrate dissociation below quadruple point in sandy sediment," Applied Energy, Elsevier, vol. 162(C), pages 372-381.
    9. Zheng, Ruyi & Li, Shuxia & Li, Qingping & Li, Xiaoli, 2018. "Study on the relations between controlling mechanisms and dissociation front of gas hydrate reservoirs," Applied Energy, Elsevier, vol. 215(C), pages 405-415.
    10. Olga Gaidukova & Sergei Misyura & Pavel Strizhak, 2022. "Key Areas of Gas Hydrates Study: Review," Energies, MDPI, vol. 15(5), pages 1-18, February.
    11. Li, Nan & Zhang, Jie & Xia, Ming-Ji & Sun, Chang-Yu & Liu, Yan-Sheng & Chen, Guang-Jin, 2021. "Gas production from heterogeneous hydrate-bearing sediments by depressurization in a large-scale simulator," Energy, Elsevier, vol. 234(C).
    12. Thakre, Niraj & Jana, Amiya K., 2021. "Physical and molecular insights to Clathrate hydrate thermodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Azizi, Mohammad Ali & Brouwer, Jacob & Dunn-Rankin, Derek, 2016. "Analytical investigation of high temperature 1kW solid oxide fuel cell system feasibility in methane hydrate recovery and deep ocean power generation," Applied Energy, Elsevier, vol. 179(C), pages 909-928.
    14. Chong, Zheng Rong & Moh, Jia Wei Regine & Yin, Zhenyuan & Zhao, Jianzhong & Linga, Praveen, 2018. "Effect of vertical wellbore incorporation on energy recovery from aqueous rich hydrate sediments," Applied Energy, Elsevier, vol. 229(C), pages 637-647.
    15. Song, Yongchen & Yang, Lei & Zhao, Jiafei & Liu, Weiguo & Yang, Mingjun & Li, Yanghui & Liu, Yu & Li, Qingping, 2014. "The status of natural gas hydrate research in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 778-791.
    16. Xu, Chun-Gang & Cai, Jing & Lin, Fu-hua & Chen, Zhao-Yang & Li, Xiao-Sen, 2015. "Raman analysis on methane production from natural gas hydrate by carbon dioxide–methane replacement," Energy, Elsevier, vol. 79(C), pages 111-116.
    17. Yang, Mingjun & Dong, Shuang & Zhao, Jie & Zheng, Jia-nan & Liu, Zheyuan & Song, Yongchen, 2021. "Ice behaviors and heat transfer characteristics during the isothermal production process of methane hydrate reservoirs by depressurization," Energy, Elsevier, vol. 232(C).
    18. Dong, Shuang & Yang, Mingjun & Chen, Mingkun & Zheng, Jia-nan & Song, Yongchen, 2022. "Thermodynamics analysis and temperature response mechanism during methane hydrate production by depressurization," Energy, Elsevier, vol. 241(C).
    19. Li, Yanlong & Wu, Nengyou & Gao, Deli & Chen, Qiang & Liu, Changling & Yang, Daoyong & Jin, Yurong & Ning, Fulong & Tan, Mingjian & Hu, Gaowei, 2021. "Optimization and analysis of gravel packing parameters in horizontal wells for natural gas hydrate production," Energy, Elsevier, vol. 219(C).
    20. Yu, Tao & Guan, Guoqing & Abudula, Abuliti & Wang, Dayong & Song, Yongchen, 2021. "Numerical evaluation of free gas accumulation behavior in a reservoir during methane hydrate production using a multiple-well system," Energy, Elsevier, vol. 218(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:22:p:4268-:d:285083. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.