IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v254y2022ipbs0360544222012919.html
   My bibliography  Save this article

A comprehensive understanding of synergetic effect and volatile interaction mechanisms during co-pyrolysis of rice husk and different rank coals

Author

Listed:
  • Tian, Bin
  • Zhao, Wanyi
  • Guo, Qingjie
  • Tian, Yuanyu

Abstract

The techniques of co-utilization of biomass and coal are of wide concern due to the benefit of CO2 reduction. Although the co-pyrolysis process was extensively studied over the past few years, the effects of different rank coals on synergetic effect and volatile interaction mechanisms remained unclear. In this work, co-pyrolysis of rice husk (RH) and three different rank coals was comprehensively investigated to reveal the volatile release, gas product formation, changes of pore structure, pyrolysis kinetics and the synergetic effect. Co-pyrolysis of RH and coals always showed positive synergetic effect and could release more volatile species compared with individual pyrolysis. The extent of the synergetic effect in terms of volatile release and gas production was profoundly affected by different rank coals and increased remarkably as the blending changed from lignite to bituminous coal. A novel step-wise volatile release and interaction mechanism was proposed to explain the existence of synergetic effect and changes of pore structure in chars on the basis of the research results. In addition, kinetic studies showed that co-pyrolysis reactions of RH and coals were essentially controlled by chemical reaction mechanism from first to third order.

Suggested Citation

  • Tian, Bin & Zhao, Wanyi & Guo, Qingjie & Tian, Yuanyu, 2022. "A comprehensive understanding of synergetic effect and volatile interaction mechanisms during co-pyrolysis of rice husk and different rank coals," Energy, Elsevier, vol. 254(PB).
  • Handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012919
    DOI: 10.1016/j.energy.2022.124388
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222012919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124388?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Piekarczyk, Wodzisław & Czarnowska, Lucyna & Ptasiński, Krzysztof & Stanek, Wojciech, 2013. "Thermodynamic evaluation of biomass-to-biofuels production systems," Energy, Elsevier, vol. 62(C), pages 95-104.
    2. Chen, Yi-Feng & Su, Sheng & Zhang, Liang-Ping & Jiang, Long & Qing, Meng-Xia & Chi, Huan-Ying & Ling, Peng & Han, Heng-Da & Xu, Kai & Wang, Yi & Hu, Song & Xiang, Jun, 2021. "Insights into evolution mechanism of PAHs in coal thermal conversion: A combined experimental and DFT study," Energy, Elsevier, vol. 222(C).
    3. Zeng, Kuo & Li, Rui & Minh, Doan Pham & Weiss-Hortala, Elsa & Nzihou, Ange & Zhong, Dian & Flamant, Gilles, 2020. "Characterization of char generated from solar pyrolysis of heavy metal contaminated biomass," Energy, Elsevier, vol. 206(C).
    4. Qiu, Shuxing & Zhang, Shengfu & Zhou, Xiaohu & Zhang, Qingyun & Qiu, Guibao & Hu, Meilong & You, Zhixiong & Wen, Liangying & Bai, Chenguang, 2019. "Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis," Renewable Energy, Elsevier, vol. 136(C), pages 308-316.
    5. Laougé, Zakari Boubacar & Merdun, Hasan, 2021. "Investigation of thermal behavior of pine sawdust and coal during co-pyrolysis and co-combustion," Energy, Elsevier, vol. 231(C).
    6. Yang, Ziqi & Wu, Yuanqing & Zhang, Zisheng & Li, Hong & Li, Xingang & Egorov, Roman I. & Strizhak, Pavel A. & Gao, Xin, 2019. "Recent advances in co-thermochemical conversions of biomass with fossil fuels focusing on the synergistic effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 384-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Xiangchun & Song, Huan & Han, Kangshun & Hu, Jun & Zhao, Zhigang & Cui, Ping, 2023. "Insight into low-temperature co-pyrolysis of Qinglongshan lean coal with organic matter in Huadian oil shale," Energy, Elsevier, vol. 285(C).
    2. Duan, Zhonghui & Zhang, Yongmin & Yang, Fu & Liu, Meijuan & Wang, Zhendong & Zhao, Youzhi & Ma, Li, 2024. "Research on controllable shock wave technology for in-situ development of tar-rich coal," Energy, Elsevier, vol. 288(C).
    3. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    4. Zhang, Jinzhi & Zhang, Ke & Huang, Jiangang & Feng, Yutong & Yellezuome, Dominic & Zhao, Ruidong & Chen, Tianju & Wu, Jinhu, 2024. "Synergistic effect and volatile emission characteristics during co-combustion of biomass and low-rank coal," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Peters, Jens F. & Petrakopoulou, Fontina & Dufour, Javier, 2015. "Exergy analysis of synthetic biofuel production via fast pyrolysis and hydroupgrading," Energy, Elsevier, vol. 79(C), pages 325-336.
    4. Berthold, Engamba Esso Samy & Deng, Wei & Zhou, Junbo & Bertrand, Aguenkeu Mefinnya Elie & Xu, Jun & Jiang, Long & Su, Sheng & Hu, Song & Hu, Xun & Wang, Yi & Xiang, Jun, 2023. "Impact of plastic type on synergistic effects during co-pyrolysis of rice husk and plastics," Energy, Elsevier, vol. 281(C).
    5. Yao, Qiuxiang & Wang, Linyang & Ma, Mingming & Ma, Li & He, Lei & Ma, Duo & Sun, Ming, 2024. "A quantitative investigation on pyrolysis behaviors of metal ion-exchanged coal macerals by interpretable machine learning algorithms," Energy, Elsevier, vol. 300(C).
    6. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    7. Xu, Hao & Cheng, Shuo & Hungwe, Douglas & Yoshikawa, Kunio & Takahashi, Fumitake, 2022. "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors," Applied Energy, Elsevier, vol. 327(C).
    8. Lombardi, Lidia & Mendecka, Barbara & Carnevale, Ennio & Stanek, Wojciech, 2018. "Environmental impacts of electricity production of micro wind turbines with vertical axis," Renewable Energy, Elsevier, vol. 128(PB), pages 553-564.
    9. Stanek, Wojciech & Gazda, Wiesław & Kostowski, Wojciech, 2015. "Thermo-ecological assessment of CCHP (combined cold-heat-and-power) plant supported with renewable energy," Energy, Elsevier, vol. 92(P3), pages 279-289.
    10. Zhao, Jingyu & Hang, Gai & Song, Jiajia & Lu, Shiping & Ming, Hanqi & Chang, Jiaming & Deng, Jun & Zhang, Yanni & Shu, Chi-Min, 2023. "Spontaneous oxidation kinetics of weathered coal based upon thermogravimetric characteristics," Energy, Elsevier, vol. 275(C).
    11. Toledo, Mario & Arriagada, Andrés & Ripoll, Nicolás & Salgansky, Eugene A. & Mujeebu, Muhammad Abdul, 2023. "Hydrogen and syngas production by hybrid filtration combustion: Progress and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Dong, Lu & Liu, Yuhao & Wen, Huaizhou & Zou, Chan & Dai, Qiqi & Zhang, Haojie & Xu, Lejin & Hu, Hongyun & Yao, Hong, 2023. "The deoxygenation mechanism of biomass thermal conversion with molten salts: Experimental and theoretical analysis," Renewable Energy, Elsevier, vol. 219(P1).
    13. Kai Whiting & Luis Gabriel Carmona & Angeles Carrasco & Tânia Sousa, 2017. "Exergy Replacement Cost of Fossil Fuels: Closing the Carbon Cycle," Energies, MDPI, vol. 10(7), pages 1-21, July.
    14. Stanek, Wojciech & Mendecka, Barbara & Lombardi, Lidia & Simla, Tomasz, 2018. "Environmental assessment of wind turbine systems based on thermo-ecological cost," Energy, Elsevier, vol. 160(C), pages 341-348.
    15. Sreejith, C.C. & Haridasan, Navaneeth & Muraleedharan, C. & Arun, P., 2014. "Allothermal air–steam gasification of biomass with CO2 (carbon dioxide) sorption: Performance prediction based on a chemical kinetic model," Energy, Elsevier, vol. 69(C), pages 399-408.
    16. Aprianti, Nabila & Faizal, Muhammad & Said, Muhammad & Nasir, Subriyer & Fudholi, Ahmad, 2023. "Gasification kinetic and thermodynamic parameters of fine coal using thermogravimetric analysis," Energy, Elsevier, vol. 268(C).
    17. Whiting, Kai & Carmona, Luis Gabriel & Sousa, Tânia, 2017. "A review of the use of exergy to evaluate the sustainability of fossil fuels and non-fuel mineral depletion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 202-211.
    18. Hamed, A.S.A. & Yusof, N.I.F.M. & Yahya, M.S. & Cardozo, E. & Munajat, N.F., 2023. "Concentrated solar pyrolysis for oil palm biomass: An exploratory review within the Malaysian context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Quintero-Coronel, D.A. & Lenis-Rodas, Y.A. & Corredor, L.A. & Perreault, P. & Gonzalez-Quiroga, A., 2021. "Thermochemical conversion of coal and biomass blends in a top-lit updraft fixed bed reactor: Experimental assessment of the ignition front propagation velocity," Energy, Elsevier, vol. 220(C).
    20. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba-Rec, Izabela & Szymańska-Chargot, Monika, 2020. "Upgrading of green waste into carbon-rich solid biofuel by hydrothermal carbonization: The effect of process parameters on hydrochar derived from acacia," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222012919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.