IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i13p3861-d583211.html
   My bibliography  Save this article

Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study

Author

Listed:
  • Ebtihal A. AlDayyat

    (Chemical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan)

  • Motasem N. Saidan

    (Chemical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan)

  • Zayed Al-Hamamre

    (Chemical Engineering Department, School of Engineering, The University of Jordan, Amman 11942, Jordan)

  • Mohammad Al-Addous

    (Energy Engineering Department, School of Natural Resources Engineering and Management, German Jordanian University, P.O. Box 35247, Amman 11180, Jordan)

  • Malek Alkasrawi

    (Department of PS and Chemical Engineering, University of Wisconsin Stevens Point, Stevens Point, WI 54481, USA)

Abstract

The current research focuses on assessing the potential of municipal solid waste (MSW) conversion into biofuel using pyrolysis process. The MSW samples were taken from Zaatari Syrian Refugee Camp. The physical and chemical characteristics of MSW were studied using proximate and elemental analysis. The results showed that moisture content of MSW is 32.3%, volatile matter (VM) is 67.99%, fixed carbon (FC) content is 5.46%, and ash content is 24.33%. The chemical analysis was conducted using CHNS analyzer and found that the percentage of elements contents: 46% Carbon (C) content, 12% Hydrogen (H 2 ), 2% Nitrogen (N 2 ), 44% Oxygen (O 2 ), and higher heat value (HHV) is 26.14 MJ/kg. The MSW pyrolysis was conducted using tubular fluidized bed reactor (FBR) under inert gas (Nitrogen) at 500 °C with 20 °C/min heating rate and using average particles size 5–10 mm. The products of MSW pyrolysis reaction were: pyrolytic liquid, solid char, and gaseous mixture. The pyrolytic oil and residual char were analyzed using Elemental Analyzer and Fourier Transform Infrared Spectroscopy (FTIR). The results of FTIR showed that oil product has considerable amounts of alkenes, alkanes, and carbonyl groups due to high organic compounds contents in MSW. The elemental analysis results showed that oil product content consists of 55% C, 37% O 2 , and the HHV is 20.8 MJ/kg. The elemental analysis of biochar showed that biochar content consists of 47% C, 49% O 2 , and HHV is 11.5 MJ/kg. Further research is recommended to study the effects of parameters as reactor types and operating conditions to assess the feasibility of MSW pyrolysis, in addition to the environmental impact study which is necessary to identify and predict the relevant environmental effects of this process.

Suggested Citation

  • Ebtihal A. AlDayyat & Motasem N. Saidan & Zayed Al-Hamamre & Mohammad Al-Addous & Malek Alkasrawi, 2021. "Pyrolysis of Solid Waste for Bio-Oil and Char Production in Refugees’ Camp: A Case Study," Energies, MDPI, vol. 14(13), pages 1-11, June.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3861-:d:583211
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/13/3861/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/13/3861/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Salameh, Tareq & Tawalbeh, Muhammad & Al-Shannag, Mohammad & Saidan, Motasem & Melhem, Khalid Bani & Alkasrawi, Malek, 2020. "Energy saving in the process of bioethanol production from renewable paper mill sludge," Energy, Elsevier, vol. 196(C).
    2. Ramez Abdallah & Adel Juaidi & Mahmoud Assad & Tareq Salameh & Francisco Manzano-Agugliaro, 2020. "Energy Recovery from Waste Tires Using Pyrolysis: Palestine as Case of Study," Energies, MDPI, vol. 13(7), pages 1-13, April.
    3. Qiu, Shuxing & Zhang, Shengfu & Zhou, Xiaohu & Zhang, Qingyun & Qiu, Guibao & Hu, Meilong & You, Zhixiong & Wen, Liangying & Bai, Chenguang, 2019. "Thermal behavior and organic functional structure of poplar-fat coal blends during co-pyrolysis," Renewable Energy, Elsevier, vol. 136(C), pages 308-316.
    4. Tareq K. Al-Awad & Motasem N. Saidan & Brian J. Gareau, 2018. "Halon management and ozone-depleting substances control in Jordan," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(3), pages 391-408, June.
    5. Mohammad Al-Addous & Motasem Saidan & Mathhar Bdour & Zakariya Dalala & Aiman Albatayneh & Christina B Class, 2020. "Key aspects and feasibility assessment of a proposed wind farm in Jordan," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 15(1), pages 97-105.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jéssica Cristina Conte da Silva & Jorge Fernando Hungria Ferreira & Kelly Christina Alves Bezerra & Lucas Pinto Bernar & Caio Campos Ferreir, 2022. "A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical P," Energies, MDPI, vol. 15(21), pages 1-30, October.
    2. Julia Karaeva & Svetlana Timofeeva & Marat Gilfanov & Marina Slobozhaninova & Olga Sidorkina & Ekaterina Luchkina & Vladimir Panchenko & Vadim Bolshev, 2023. "Exploring the Prospective of Weed Amaranthus retroflexus for Biofuel Production through Pyrolysis," Agriculture, MDPI, vol. 13(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Han & Jinling Li & Chengtun Qu & Zhiguo Shao & Tao Yu & Bo Yang, 2022. "Recent Progress in Sludge Co-Pyrolysis Technology," Sustainability, MDPI, vol. 14(13), pages 1-12, June.
    2. Sameh Monna & Adel Juaidi & Ramez Abdallah & Aiman Albatayneh & Patrick Dutournie & Mejdi Jeguirim, 2021. "Towards Sustainable Energy Retrofitting, a Simulation for Potential Energy Use Reduction in Residential Buildings in Palestine," Energies, MDPI, vol. 14(13), pages 1-13, June.
    3. Mohammad Al-Addous & Motasem N. Saidan & Mathhar Bdour & Mohammad Alnaief, 2018. "Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System," Energies, MDPI, vol. 12(1), pages 1-11, December.
    4. Hisham Afash & Bertug Ozarisoy & Hasim Altan & Cenk Budayan, 2023. "Recycling of Tire Waste Using Pyrolysis: An Environmental Perspective," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    5. Xu, Hao & Cheng, Shuo & Hungwe, Douglas & Yoshikawa, Kunio & Takahashi, Fumitake, 2022. "Co-pyrolysis coupled with torrefaction enhances hydrocarbons production from rice straw and oil sludge: The effect of torrefaction on co-pyrolysis synergistic behaviors," Applied Energy, Elsevier, vol. 327(C).
    6. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    7. Gouws, S.M. & Carrier, M. & Bunt, J.R. & Neomagus, H.W.J.P., 2021. "Co-pyrolysis of coal and raw/torrefied biomass: A review on chemistry, kinetics and implementation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Alberto-Jesus Perea-Moreno & Francisco Manzano-Agugliaro, 2020. "Energy Saving at Cities," Energies, MDPI, vol. 13(15), pages 1-3, July.
    9. Panagiotis Grammelis & Nikolaos Margaritis & Petros Dallas & Dimitrios Rakopoulos & Georgios Mavrias, 2021. "A Review on Management of End of Life Tires (ELTs) and Alternative Uses of Textile Fibers," Energies, MDPI, vol. 14(3), pages 1-20, January.
    10. Alkasrawi, Malek & Al-Othman, Amani & Tawalbeh, Muhammad & Doncan, Shona & Gurram, Raghu & Singsaas, Eric & Almomani, Fares & Al-Asheh, Sameer, 2021. "A novel technique of paper mill sludge conversion to bioethanol toward sustainable energy production: Effect of fiber recovery on the saccharification hydrolysis and fermentation," Energy, Elsevier, vol. 223(C).
    11. Andromachi Chasioti & Anastasia Zabaniotou, 2024. "An Industrial Perspective for Sustainable Polypropylene Plastic Waste Management via Catalytic Pyrolysis—A Technical Report," Sustainability, MDPI, vol. 16(14), pages 1-20, July.
    12. Anastasia Zabaniotou & Ioannis Vaskalis, 2023. "Economic Assessment of Polypropylene Waste (PP) Pyrolysis in Circular Economy and Industrial Symbiosis," Energies, MDPI, vol. 16(2), pages 1-26, January.
    13. Kijo-Kleczkowska, Agnieszka & Szumera, Magdalena & Gnatowski, Adam & Sadkowski, Dominik, 2022. "Comparative thermal analysis of coal fuels, biomass, fly ash and polyamide," Energy, Elsevier, vol. 258(C).
    14. Ramez Abdallah & Emad Natsheh & Adel Juaidi & Sufyan Samara & Francisco Manzano-Agugliaro, 2020. "A Multi-Level World Comprehensive Neural Network Model for Maximum Annual Solar Irradiation on a Flat Surface," Energies, MDPI, vol. 13(23), pages 1-31, December.
    15. Mohammad Alnaief & Arwa Sandouqa & Ibrahem Altarawneh & Mohammad Al-Shannag & Malek Alkasrawi & Zayed Al-hamamre, 2020. "Adsorption Characteristics and Potential of Olive Cake Alkali Residues for Biodiesel Purification," Energies, MDPI, vol. 14(1), pages 1-12, December.
    16. Remston Martis & Amani Al-Othman & Muhammad Tawalbeh & Malek Alkasrawi, 2020. "Energy and Economic Analysis of Date Palm Biomass Feedstock for Biofuel Production in UAE: Pyrolysis, Gasification and Fermentation," Energies, MDPI, vol. 13(22), pages 1-34, November.
    17. Salpie S. Djoundourian, 2021. "Response of the Arab world to climate change challenges and the Paris agreement," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 21(3), pages 469-491, September.
    18. Shona M. Duncan & Malek Alkasrawi & Raghu Gurram & Fares Almomani & Amy E Wiberley-Bradford & Eric Singsaas, 2020. "Paper Mill Sludge as a Source of Sugars for Use in the Production of Bioethanol and Isoprene," Energies, MDPI, vol. 13(18), pages 1-12, September.
    19. Chong, Ting Yen & Cheah, Siang Aun & Ong, Chin Tye & Wong, Lee Yi & Goh, Chern Rui & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee & Lim, Steven, 2020. "Techno-economic evaluation of third-generation bioethanol production utilizing the macroalgae waste: A case study in Malaysia," Energy, Elsevier, vol. 210(C).
    20. Kijo-Kleczkowska, Agnieszka & Gnatowski, Adam & Krzywanski, Jaroslaw & Gajek, Marcin & Szumera, Magdalena & Tora, Barbara & Kogut, Krzysztof & Knaś, Krzysztof, 2024. "Experimental research and prediction of heat generation during plastics, coal and biomass waste combustion using thermal analysis methods," Energy, Elsevier, vol. 290(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:13:p:3861-:d:583211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.