IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v23y2013icp503-513.html
   My bibliography  Save this article

Tilt angle optimization to maximize incident solar radiation: A review

Author

Listed:
  • Yadav, Amit Kumar
  • Chandel, S.S.

Abstract

The tilt angle of a solar energy system is one of the important parameters for capturing maximum solar radiation falling on the solar panels. This angle is site specific as it depends on the daily, monthly and yearly path of the sun. The accurate determination of the optimum tilt angle for the location of interest is essential for maximum energy production by the system. A number of methods have been used for determining the tilt angle at different locations worldwide. Keeping in view the relevance of the optimum tilt angle in energy production and reducing the cost of solar energy systems, the present study has been undertaken. This paper provides the update status of research and applications of various methods for determining solar panel tilt angle using different optimization techniques. The study shows that for maximum energy gain, the optimum tilt angle for solar systems must be determined accurately for each location. The review will be useful for designers and researchers to select suitable methodology for determining optimal tilt angle for solar systems at any site.

Suggested Citation

  • Yadav, Amit Kumar & Chandel, S.S., 2013. "Tilt angle optimization to maximize incident solar radiation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 503-513.
  • Handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:503-513
    DOI: 10.1016/j.rser.2013.02.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032113001299
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2013.02.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    2. Bakirci, Kadir, 2009. "Models of solar radiation with hours of bright sunshine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2580-2588, December.
    3. Kacira, Murat & Simsek, Mehmet & Babur, Yunus & Demirkol, Sedat, 2004. "Determining optimum tilt angles and orientations of photovoltaic panels in Sanliurfa, Turkey," Renewable Energy, Elsevier, vol. 29(8), pages 1265-1275.
    4. Yakup, Mohd Azmi bin Hj Mohd & Malik, A.Q, 2001. "Optimum tilt angle and orientation for solar collector in Brunei Darussalam," Renewable Energy, Elsevier, vol. 24(2), pages 223-234.
    5. Notton, Gilles & Paoli, Christophe & Vasileva, Siyana & Nivet, Marie Laure & Canaletti, Jean-Louis & Cristofari, Christian, 2012. "Estimation of hourly global solar irradiation on tilted planes from horizontal one using artificial neural networks," Energy, Elsevier, vol. 39(1), pages 166-179.
    6. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "A new neural network model for evaluating the performance of various hourly slope irradiation models: Implementation for the region of Athens," Renewable Energy, Elsevier, vol. 35(7), pages 1357-1362.
    7. Asl-Soleimani, E & Farhangi, S & Zabihi, M.S, 2001. "The effect of tilt angle, air pollution on performance of photovoltaic systems in Tehran," Renewable Energy, Elsevier, vol. 24(3), pages 459-468.
    8. Shariah, Adnan & Al-Akhras, M-Ali & Al-Omari, I.A., 2002. "Optimizing the tilt angle of solar collectors," Renewable Energy, Elsevier, vol. 26(4), pages 587-598.
    9. Pandey, Chanchal Kumar & Katiyar, A.K., 2011. "A comparative study of solar irradiation models on various inclined surfaces for India," Applied Energy, Elsevier, vol. 88(4), pages 1455-1459, April.
    10. El-Sebaii, A.A. & Al-Hazmi, F.S. & Al-Ghamdi, A.A. & Yaghmour, S.J., 2010. "Global, direct and diffuse solar radiation on horizontal and tilted surfaces in Jeddah, Saudi Arabia," Applied Energy, Elsevier, vol. 87(2), pages 568-576, February.
    11. Chang, Ying-Pin, 2010. "Optimal the tilt angles for photovoltaic modules using PSO method with nonlinear time-varying evolution," Energy, Elsevier, vol. 35(5), pages 1954-1963.
    12. Sun, Liangliang & Lu, Lin & Yang, Hongxing, 2012. "Optimum design of shading-type building-integrated photovoltaic claddings with different surface azimuth angles," Applied Energy, Elsevier, vol. 90(1), pages 233-240.
    13. Hartley, L.E. & Martínez-Lozano, J.A. & Utrillas, M.P. & Tena, F. & Pedrós, R., 1999. "The optimisation of the angle of inclination of a solar collector to maximise the incident solar radiation," Renewable Energy, Elsevier, vol. 17(3), pages 291-309.
    14. Rowlands, Ian H. & Kemery, Briana Paige & Beausoleil-Morrison, Ian, 2011. "Optimal solar-PV tilt angle and azimuth: An Ontario (Canada) case-study," Energy Policy, Elsevier, vol. 39(3), pages 1397-1409, March.
    15. Kaldellis, John & Zafirakis, Dimitrios, 2012. "Experimental investigation of the optimum photovoltaic panels’ tilt angle during the summer period," Energy, Elsevier, vol. 38(1), pages 305-314.
    16. Tang, Runsheng & Gao, Wenfeng & Yu, Yamei & Chen, Hua, 2009. "Optimal tilt-angles of all-glass evacuated tube solar collectors," Energy, Elsevier, vol. 34(9), pages 1387-1395.
    17. Pandey, Chanchal Kumar & Katiyar, A.K., 2009. "A note on diffuse solar radiation on a tilted surface," Energy, Elsevier, vol. 34(11), pages 1764-1769.
    18. Mehleri, E.D. & Zervas, P.L. & Sarimveis, H. & Palyvos, J.A. & Markatos, N.C., 2010. "Determination of the optimal tilt angle and orientation for solar photovoltaic arrays," Renewable Energy, Elsevier, vol. 35(11), pages 2468-2475.
    19. Tang, Runsheng & Wu, Tong, 2004. "Optimal tilt-angles for solar collectors used in China," Applied Energy, Elsevier, vol. 79(3), pages 239-248, November.
    20. David, Mathieu & Lauret, Philippe & Boland, John, 2013. "Evaluating tilted plane models for solar radiation using comprehensive testing procedures, at a southern hemisphere location," Renewable Energy, Elsevier, vol. 51(C), pages 124-131.
    21. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    22. Armstrong, S. & Hurley, W.G., 2010. "A new methodology to optimise solar energy extraction under cloudy conditions," Renewable Energy, Elsevier, vol. 35(4), pages 780-787.
    23. Demain, Colienne & Journée, Michel & Bertrand, Cédric, 2013. "Evaluation of different models to estimate the global solar radiation on inclined surfaces," Renewable Energy, Elsevier, vol. 50(C), pages 710-721.
    24. Agha, K. R. & Sbita, M. N., 2000. "On the sizing parameters for stand-alone solar-energy systems," Applied Energy, Elsevier, vol. 65(1-4), pages 73-84, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hafez, A.Z. & Soliman, A. & El-Metwally, K.A. & Ismail, I.M., 2017. "Tilt and azimuth angles in solar energy applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 147-168.
    2. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    3. Kaddoura, Tarek O. & Ramli, Makbul A.M. & Al-Turki, Yusuf A., 2016. "On the estimation of the optimum tilt angle of PV panel in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 626-634.
    4. Bakirci, Kadir, 2012. "General models for optimum tilt angles of solar panels: Turkey case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6149-6159.
    5. Khatib, Tamer & Mohamed, Azah & Sopian, K., 2012. "A review of solar energy modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2864-2869.
    6. Rehman, Naveed ur & Uzair, Muhammad & Allauddin, Usman, 2020. "An optical-energy model for optimizing the geometrical layout of solar photovoltaic arrays in a constrained field," Renewable Energy, Elsevier, vol. 149(C), pages 55-65.
    7. Herrera-Romero, J.V. & Colorado-Garrido, D. & Escalante Soberanis, M.A. & Flota-Bañuelos, M., 2020. "Estimation of the optimum tilt angle of solar collectors in Coatzacoalcos, Veracruz," Renewable Energy, Elsevier, vol. 153(C), pages 615-623.
    8. Haixiang Zang & Mian Guo & Zhinong Wei & Guoqiang Sun, 2016. "Determination of the Optimal Tilt Angle of Solar Collectors for Different Climates of China," Sustainability, MDPI, vol. 8(7), pages 1-16, July.
    9. Ullah, Asad & Imran, Hassan & Maqsood, Zaki & Butt, Nauman Zafar, 2019. "Investigation of optimal tilt angles and effects of soiling on PV energy production in Pakistan," Renewable Energy, Elsevier, vol. 139(C), pages 830-843.
    10. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    11. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    12. Dey, Sumon & Lakshmanan, Madan Kumar & Pesala, Bala, 2018. "Optimal solar tree design for increased flexibility in seasonal energy extraction," Renewable Energy, Elsevier, vol. 125(C), pages 1038-1048.
    13. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    14. Chang, Tian Pau, 2009. "The gain of single-axis tracked panel according to extraterrestrial radiation," Applied Energy, Elsevier, vol. 86(7-8), pages 1074-1079, July.
    15. Guo, Siyu & Walsh, Timothy Michael & Peters, Marius, 2013. "Vertically mounted bifacial photovoltaic modules: A global analysis," Energy, Elsevier, vol. 61(C), pages 447-454.
    16. Benghanem, M., 2011. "Optimization of tilt angle for solar panel: Case study for Madinah, Saudi Arabia," Applied Energy, Elsevier, vol. 88(4), pages 1427-1433, April.
    17. Mohammadi, Kasra & Khorasanizadeh, Hossein, 2015. "A review of solar radiation on vertically mounted solar surfaces and proper azimuth angles in six Iranian major cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 504-518.
    18. Le Roux, W.G., 2016. "Optimum tilt and azimuth angles for fixed solar collectors in South Africa using measured data," Renewable Energy, Elsevier, vol. 96(PA), pages 603-612.
    19. Tripathy, M. & Sadhu, P.K. & Panda, S.K., 2016. "A critical review on building integrated photovoltaic products and their applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 451-465.
    20. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:23:y:2013:i:c:p:503-513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.