IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s0960148123012843.html
   My bibliography  Save this article

Experimental performance analysis of photovoltaic systems applied to an positive energy community based on building renovation

Author

Listed:
  • An, Young-sub
  • Kim, Jong-kyu
  • Joo, Hong-Jin
  • Lee, Wang-Jae
  • Han, Gwang-woo
  • Kim, Haneul
  • Kim, Min-Hwi

Abstract

Global carbon neutrality can be achieved by reducing greenhouse gas emissions in the building sector using various renewable energy systems, such as photovoltaic (PV) systems, at the community level. In this study, various PV systems were applied to a community consisting of two residential and two nonresidential buildings, and a comparative analysis was conducted to achieve a net yearly positive energy balance at the community level. The PV systems included building-attached PV (BAPV), building-integrated PV (BIPV), and BIPV–thermal (BIPVT) systems. An analysis of the empirical data over a year revealed that the annual net energy balance of the proposed community was 139%, the self-sufficiency of building energy consumption was 33.2%, and the self-consumption of solar power generation was 76.7%. Based on these empirical data, the initial investment cost savings of the PV system and payback period were analyzed through carbon credit trading. The results showed that the payback period ranged from 9 to 17 years.

Suggested Citation

  • An, Young-sub & Kim, Jong-kyu & Joo, Hong-Jin & Lee, Wang-Jae & Han, Gwang-woo & Kim, Haneul & Kim, Min-Hwi, 2023. "Experimental performance analysis of photovoltaic systems applied to an positive energy community based on building renovation," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012843
    DOI: 10.1016/j.renene.2023.119369
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012843
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119369?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koo, Choongwan & Si, Ke & Li, Wenzhuo & Lee, JeeHee, 2022. "Integrated approach to evaluating the impact of feed-in tariffs on the life cycle economic performance of photovoltaic systems in China: A case study of educational facilities," Energy, Elsevier, vol. 254(PB).
    2. Toshi H. Arimura & Tatsuya Abe, 2021. "The impact of the Tokyo emissions trading scheme on office buildings: what factor contributed to the emission reduction?," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 517-533, July.
    3. Sorgato, M.J. & Schneider, K. & Rüther, R., 2018. "Technical and economic evaluation of thin-film CdTe building-integrated photovoltaics (BIPV) replacing façade and rooftop materials in office buildings in a warm and sunny climate," Renewable Energy, Elsevier, vol. 118(C), pages 84-98.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Tingsen & Liu, Shuli & Zhang, Shaoliang & Shen, Yongliang & Ji, Wenjie & Wang, Zhihao & Li, Wuyan, 2024. "Experimental study on solar wall by considering parametric sensitivity analysis to enhance heat transfer and energy grade using compound parabolic concentrator and pulsating heat pipe," Renewable Energy, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shiro Takeda & Toshi H. Arimura, 2020. "A Computable General Equilibrium Analysis of Environmental Tax Reform in Japan," RIEEM Discussion Paper Series 2002, Research Institute for Environmental Economics and Management, Waseda University.
    2. D’Adamo, Idiano & Falcone, Pasquale Marcello & Gastaldi, Massimo & Morone, Piergiuseppe, 2020. "The economic viability of photovoltaic systems in public buildings: Evidence from Italy," Energy, Elsevier, vol. 207(C).
    3. D'Adamo, Idiano & Gastaldi, Massimo & Morone, Piergiuseppe & Ozturk, Ilhan, 2022. "Economics and policy implications of residential photovoltaic systems in Italy's developed market," Utilities Policy, Elsevier, vol. 79(C).
    4. Espinoza, R. & Muñoz-Cerón, E. & Aguilera, J. & de la Casa, J., 2019. "Feasibility evaluation of residential photovoltaic self-consumption projects in Peru," Renewable Energy, Elsevier, vol. 136(C), pages 414-427.
    5. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    6. Satoshi Nakano & Ayu Washizu, 2021. "Analysis of inter-regional effects caused by the wide-area operation of the power grid in Japan: an implication for carbon pricing schemes," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 535-556, July.
    7. Lu, Guanyu & Sugino, Makoto & Arimura, Toshi H. & Horie, Tetsuya, 2022. "Success and failure of the voluntary action plan: Disaggregated sector decomposition analysis of energy-related CO2 emissions in Japan," Energy Policy, Elsevier, vol. 163(C).
    8. Tang, Yayun & Ji, Jie & Xie, Hao & Zhang, Chengyan & Tian, Xinyi, 2023. "Single- and double-inlet PV curtain wall systems using novel heat recovery technique for PV cooling, fresh and supply air handling: Design and performance assessment," Energy, Elsevier, vol. 282(C).
    9. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    10. Weerasinghe, R.P.N.P. & Yang, R.J. & Wakefield, R. & Too, E. & Le, T. & Corkish, R. & Chen, S. & Wang, C., 2021. "Economic viability of building integrated photovoltaics: A review of forty-five (45) non-domestic buildings in twelve (12) western countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Yuuki Yoshimoto & Koki Kishimoto & Kanchan Kumar Sen & Takako Mochida & Andrew Chapman, 2023. "Toward Economically Efficient Carbon Reduction: Contrasting Greening Plastic Supply Chains with Alternative Energy Policy Approaches," Sustainability, MDPI, vol. 15(17), pages 1-19, September.
    12. Lurdes Jesus Ferreira & Luís Pereira Dias & Jieling Liu, 2022. "Adopting Carbon Pricing Tools at the Local Level: A City Case Study in Portugal," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    13. Tamer, Tolga & Gürsel Dino, Ipek & Meral Akgül, Cagla, 2022. "Data-driven, long-term prediction of building performance under climate change: Building energy demand and BIPV energy generation analysis across Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    14. Fernando Mata & Meirielly Santos Jesus & Concha Cano-Díaz & Maria Dos-Santos, 2023. "European Citizens’ Worries and Self-Responsibility towards Climate Change," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    15. Dries Couckuyt & Toshi H. Arimura & Takuro Miyamoto & Naonari Yajima, 2023. "Green Policymaking in Japanese Municipalities: An Empirical Study on External and Internal Contextual Factors," Sustainability, MDPI, vol. 15(9), pages 1-26, April.
    16. Habibi, Shahryar & Obonyo, Esther Adhiambo & Memari, Ali M., 2020. "Design and development of energy efficient re-roofing solutions," Renewable Energy, Elsevier, vol. 151(C), pages 1209-1219.
    17. Guo, Xiaopeng & Dong, Yining & Ren, Dongfang, 2023. "CO2 emission reduction effect of photovoltaic industry through 2060 in China," Energy, Elsevier, vol. 269(C).
    18. Mitsutsugu Hamamoto, 2021. "Impact of the Saitama Prefecture Target-Setting Emissions Trading Program on the adoption of low-carbon technology," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(3), pages 501-515, July.
    19. Ravyts, Simon & Moschner, Jens D. & Yordanov, Georgi H. & Van den Broeck, Giel & Dalla Vecchia, Mauricio & Manganiello, Patrizio & Meuris, Marc & Driesen, Johan, 2020. "Impact of photovoltaic technology and feeder voltage level on the efficiency of façade building-integrated photovoltaic systems," Applied Energy, Elsevier, vol. 269(C).
    20. Abualkasim Bakeer & Andrii Chub & Dmitri Vinnikov & Argo Rosin, 2020. "Wide Input Voltage Range Operation of the Series Resonant DC-DC Converter with Bridgeless Boost Rectifier," Energies, MDPI, vol. 13(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s0960148123012843. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.