IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222005461.html
   My bibliography  Save this article

Simultaneous CO2 mineral sequestration and rutile beneficiation by using titanium-bearing blast furnace slag: Process description and optimization

Author

Listed:
  • He, Minyu
  • Teng, Liumei
  • Gao, Yuxiang
  • Rohani, Sohrab
  • Ren, Shan
  • Li, Jiangling
  • Yang, Jian
  • Liu, Qingcai
  • Liu, Weizao

Abstract

CO2 mineral sequestration is a promising method for abating global warming. Mineral carbonation with titanium-bearing blast furnace slag (TBFS) can offer a sustainable option for simultaneous CO2 emission reduction and comprehensive utilization of solid waste. In this study, a novel process combining CO2 mineral sequestration and rutile beneficiation was proposed by using TBFS and copperas as feedstocks. TBFS and copperas were roasted at 550–750 °C to convert the calcium and magnesium into the corresponding sulfates, while titanium in the TBFS was beneficiated to rutile. The roasted slag was then subjected to carbonation followed by recovery of rutile and hematite through flotation and magnetic separation, respectively. The effects of process parameters were studied systematically. It was found that addition of Na2SO4 significantly enhanced the conversion efficiency of Ti (from 53% to 98%). The mechanism revealed that the addition of Na2SO4 promoted the formation of molten Na3Fe(SO4)3, and gas-liquid-solid reactions proceeded much faster and efficiently. The carbonation of sulfated TBFS results indicated that the optimal CO2 storage capacity can reach 187 kg t−1 TBFS. In this process, two solid wastes were utilized for CO2 mineralization, realizing the multiple benefits of CO2 emission reduction, solid waste disposal as well as valuable byproducts recovery.

Suggested Citation

  • He, Minyu & Teng, Liumei & Gao, Yuxiang & Rohani, Sohrab & Ren, Shan & Li, Jiangling & Yang, Jian & Liu, Qingcai & Liu, Weizao, 2022. "Simultaneous CO2 mineral sequestration and rutile beneficiation by using titanium-bearing blast furnace slag: Process description and optimization," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005461
    DOI: 10.1016/j.energy.2022.123643
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123643?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shu-Yuan Pan & Yi-Hung Chen & Liang-Shih Fan & Hyunook Kim & Xiang Gao & Tung-Chai Ling & Pen-Chi Chiang & Si-Lu Pei & Guowei Gu, 2020. "CO2 mineralization and utilization by alkaline solid wastes for potential carbon reduction," Nature Sustainability, Nature, vol. 3(5), pages 399-405, May.
    2. Park, Sangwon, 2018. "CO2 reduction-conversion to precipitates and morphological control through the application of the mineral carbonation mechanism," Energy, Elsevier, vol. 153(C), pages 413-421.
    3. Ren, Shan & Aldahri, Tahani & Liu, Weizao & Liang, Bin, 2021. "CO2 mineral sequestration by using blast furnace slag: From batch to continuous experiments," Energy, Elsevier, vol. 214(C).
    4. Koohestanian, Esmaeil & Sadeghi, Jafar & Mohebbi-Kalhori, Davod & Shahraki, Farhad & Samimi, Abdolreza, 2018. "A novel process for CO2 capture from the flue gases to produce urea and ammonia," Energy, Elsevier, vol. 144(C), pages 279-285.
    5. Zhao, Tian & Liu, Zhixin, 2019. "A novel analysis of carbon capture and storage (CCS) technology adoption: An evolutionary game model between stakeholders," Energy, Elsevier, vol. 189(C).
    6. Ge, Jiachao & Zhang, Xiaozhou & Le-Hussain, Furqan, 2022. "Fines migration and mineral reactions as a mechanism for CO2 residual trapping during CO2 sequestration," Energy, Elsevier, vol. 239(PC).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Duan, Wenjun & Han, Jiachen & Yang, Shuo & Wang, Zhimei & Yu, Qingbo & Zhan, Yaquan, 2024. "Understanding CO2 adsorption in layered double oxides synthesized by slag through kinetic and modelling techniques," Energy, Elsevier, vol. 297(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng, Wenliang & Wang, Dongliang & Zhou, Huairong & Yang, Yong & Li, Hongwei & Liao, Zuwei & Yang, Siyu & Hong, Xiaodong & Li, Guixian, 2023. "Carbon dioxide from oxy-fuel coal-fired power plant integrated green ammonia for urea synthesis: Process modeling, system analysis, and techno-economic evaluation," Energy, Elsevier, vol. 278(C).
    2. Chen, Yuhong & Lyu, Yanfeng & Yang, Xiangdong & Zhang, Xiaohong & Pan, Hengyu & Wu, Jun & Lei, Yongjia & Zhang, Yanzong & Wang, Guiyin & Xu, Min & Luo, Hongbin, 2022. "Performance comparison of urea production using one set of integrated indicators considering energy use, economic cost and emissions’ impacts: A case from China," Energy, Elsevier, vol. 254(PC).
    3. Liu, Jicheng & Sun, Jiakang & Yuan, Hanying & Su, Yihan & Feng, Shuxian & Lu, Chaoran, 2022. "Behavior analysis of photovoltaic-storage-use value chain game evolution in blockchain environment," Energy, Elsevier, vol. 260(C).
    4. Tan, Qinliang & Han, Jian & Liu, Yuan, 2023. "Examining the synergistic diffusion process of carbon capture and renewable energy generation technologies under market environment: A multi-agent simulation analysis," Energy, Elsevier, vol. 282(C).
    5. Jie Gao & Qingmei Tan & Bo Cui, 2024. "Reducing Carbon Emissions from Coal-Fired Power Plants: An Analysis Using Evolutionary Game Theory," Sustainability, MDPI, vol. 16(23), pages 1-17, December.
    6. He, Yong & Jiang, Ruipeng & Liao, Nuo, 2023. "How to promote the Chinese Certified Emission Reduction scheme in the carbon market? A study based on tripartite evolutionary game model," Energy, Elsevier, vol. 285(C).
    7. Anita Punia, 2021. "Carbon dioxide sequestration by mines: implications for climate change," Climatic Change, Springer, vol. 165(1), pages 1-17, March.
    8. Li, Long & Liu, Weizao & Qin, Zhifeng & Zhang, Guoquan & Yue, Hairong & Liang, Bin & Tang, Shengwei & Luo, Dongmei, 2021. "Research on integrated CO2 absorption-mineralization and regeneration of absorbent process," Energy, Elsevier, vol. 222(C).
    9. Li, Haoyang & Wu, Nan, 2022. "Emission pricing, emission rebound, and the coverage scope of incomplete regulations," Journal of Environmental Economics and Management, Elsevier, vol. 113(C).
    10. Adnan, Muflih A. & Hossain, Mohammad M. & Kibria, Md Golam, 2020. "Biomass upgrading to high-value chemicals via gasification and electrolysis: A thermodynamic analysis," Renewable Energy, Elsevier, vol. 162(C), pages 1367-1379.
    11. McLaughlin, Hope & Littlefield, Anna A. & Menefee, Maia & Kinzer, Austin & Hull, Tobias & Sovacool, Benjamin K. & Bazilian, Morgan D. & Kim, Jinsoo & Griffiths, Steven, 2023. "Carbon capture utilization and storage in review: Sociotechnical implications for a carbon reliant world," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    12. Seo, Su Been & Kim, Hyung Woo & Kang, Seo Yeong & Go, Eun Sol & Keel, Sang In & Lee, See Hoon, 2021. "Techno-economic comparison between air-fired and oxy-fuel circulating fluidized bed power plants with ultra-supercritical cycle," Energy, Elsevier, vol. 233(C).
    13. Shuangming Yin & Yansong Li & Xiaojuan Chen & Woraphon Yamaka & Jianxu Liu, 2024. "Collaborative Digital Governance for Sustainable Rural Development in China: An Evolutionary Game Approach," Agriculture, MDPI, vol. 14(9), pages 1-23, September.
    14. Li-cai Lei & Shang Gao & En-yu Zeng, 2020. "Regulation strategies of ride-hailing market in China: an evolutionary game theoretic perspective," Electronic Commerce Research, Springer, vol. 20(3), pages 535-563, September.
    15. Pengyu Chen & Zhongzhu Chu, 2024. "Mere facade? Is greenwashing behaviour lower in low‐carbon corporates?," Business Strategy and the Environment, Wiley Blackwell, vol. 33(5), pages 4162-4174, July.
    16. Alina Ilinova & Natalia Romasheva & Alexey Cherepovitsyn, 2021. "CC(U)S Initiatives: Public Effects and “Combined Value” Performance," Resources, MDPI, vol. 10(6), pages 1-20, June.
    17. Wang, Heng & Kou, Zuhao & Ji, Zemin & Wang, Shouchuan & Li, Yunfei & Jiao, Zunsheng & Johnson, Matthew & McLaughlin, J. Fred, 2023. "Investigation of enhanced CO2 storage in deep saline aquifers by WAG and brine extraction in the Minnelusa sandstone, Wyoming," Energy, Elsevier, vol. 265(C).
    18. Baena-Moreno, Francisco M. & Rodríguez-Galán, Mónica & Vega, Fernando & Reina, T.R. & Vilches, Luis F. & Navarrete, Benito, 2019. "Converting CO2 from biogas and MgCl2 residues into valuable magnesium carbonate: A novel strategy for renewable energy production," Energy, Elsevier, vol. 180(C), pages 457-464.
    19. Zhou, Mengmeng & Wang, Shuai & Luo, Kun & Fan, Jianren, 2022. "Three-dimensional modeling study of the oxy-fuel co-firing of coal and biomass in a bubbling fluidized bed," Energy, Elsevier, vol. 247(C).
    20. Zhang, Hao & Wang, Mingyue & Cheng, Zhixuan & Wan, Ling, 2020. "Technology-sharing strategy and incentive mechanism for R&D teams of manufacturing enterprises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 555(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.