IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics036054422403069x.html
   My bibliography  Save this article

Minimum loss modulation method for various power factor angles

Author

Listed:
  • Sun, Peng
  • Song, Qiang
  • Wang, Wei

Abstract

In recent years, the energy crisis has prompted widespread attention to electric vehicles (EVs). As a core component of electric drive system in EV, motor controller has a significant impact on vehicle energy consumption. In such situation, this paper proposes a minimum loss modulation method for all power factors and reduces current THD by dead-band compensation. Firstly, the mechanism model of the controller is established for loss calculation, and the relationship between the clamping region and the current peak is analyzed based on the traditional modulation methods. Secondly, a discontinuous pulse width modulation considering power factor angle method (CPFA-DPWM) is proposed to ensure that clamping region always falls at the peak current at all power factors. Furthermore, the adoption of current vector method instead of direct sampling for current polarity determination effectively reduces judgment error and avoids false dead-band compensation. The effectiveness of the proposed method is verified by simulation and thermal measurement experiment. Under China Light-duty Vehicle Test Cycle (CLTC), the controller loss of CPFA-DPWM is reduced by 18.61 % compared to SVPWM.

Suggested Citation

  • Sun, Peng & Song, Qiang & Wang, Wei, 2024. "Minimum loss modulation method for various power factor angles," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422403069x
    DOI: 10.1016/j.energy.2024.133293
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403069X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133293?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Yang & He, Qiang & Fu, Chunyun & Liao, Shuiping & Tan, Peng, 2020. "Efficiency improvement of permanent magnet synchronous motor for electric vehicles," Energy, Elsevier, vol. 213(C).
    2. Hu, Jianjun & Deng, Chenghao & Yang, Dianzhao & Yang, Ying & Jia, Meixia, 2022. "Optimal energy consumption and torque fluctuation control of integrated electric drive system based on mechanical-electromagnetic-thermal coupling characteristics," Energy, Elsevier, vol. 247(C).
    3. Liu, Qin & Zhang, Wencan & Zhang, Zhongbo & Qin, Qichao, 2022. "A drive system global control strategy for electric vehicle based on optimized acceleration curve," Energy, Elsevier, vol. 248(C).
    4. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Jianjun & Guo, Qi & Sun, Zhicheng & Yang, Dianzhao, 2023. "Study on low-frequency torsional vibration suppression of integrated electric drive system considering nonlinear factors," Energy, Elsevier, vol. 284(C).
    2. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    3. Zhou, Xingyu & Sun, Chao & Sun, Fengchun & Zhang, Chuntao, 2023. "Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency," Applied Energy, Elsevier, vol. 344(C).
    4. Kahourzade, Solmaz & Mahmoudi, Amin & Roshandel, Emad & Cao, Zhi, 2021. "Optimal design of Axial-Flux Induction Motors based on an improved analytical model," Energy, Elsevier, vol. 237(C).
    5. Zhang, Junjiang & Feng, Ganghui & Yan, Xianghai & He, Yundong & Liu, Mengnan & Xu, Liyou, 2024. "Cooperative control method considering efficiency and tracking performance for unmanned hybrid tractor based on rotary tillage prediction," Energy, Elsevier, vol. 288(C).
    6. Selvin Raj, Jaya Antony Perinba & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Rakshith, Bairi Levi & Bose, Jefferson Raja & Mahian, Omid & Wongwises, Somchai, 2024. "Thermal management strategies and power ratings of electric vehicle motors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Kwon, Kihan & Lee, Jung-Hwan & Lim, Sang-Kil, 2023. "Optimization of multi-speed transmission for electric vehicles based on electrical and mechanical efficiency analysis," Applied Energy, Elsevier, vol. 342(C).
    8. Wang, Shaoshuai & Zhang, Jianzhong & Deng, Fujin, 2024. "Design and optimization of high torque density flux modulated multi-winding permanent magnet machines for electric vehicles," Energy, Elsevier, vol. 304(C).
    9. Liu, Qin & Zhang, Wencan & Zhang, Zhongbo & Qin, Qichao, 2022. "A drive system global control strategy for electric vehicle based on optimized acceleration curve," Energy, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422403069x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.