IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i8p2901-d164000.html
   My bibliography  Save this article

Energy Demand Patterns in an Office Building: A Case Study in Kraków (Southern Poland)

Author

Listed:
  • Jerzy Mikulik

    (Department of Engineering Management, AGH University of Science and Technology, 30-059 Kraków, Poland)

Abstract

Office buildings play a significant role in shaping the current electricity demand and its trends. Their energy demand patterns impact the power system operation on a national and regional level. What is more, both (office buildings and the power system) are also simultaneously influenced by meteorological parameters. Considering the above, the aim of this paper is to analyze a three-year hourly energy demand time series recorded in a relatively large office building in Kraków (Southern Poland). This paper will fill a gap in the literature as there is a lack of evidence from Central European countries in the area of office buildings’ energy demand and its relationship with meteorological parameters. The data was obtained from a local electricity provider whereas meteorological parameters came from weather station and satellite measurements. The analyses focused on determining the typical weekly and daily demand patterns as well as on investigating the correlation between meteorological parameters (wind speed, irradiation, humidity, and air temperature) and observed energy consumption. To estimate the correlation between investigated variables, a Pearson coefficient of correlation was used. For distinguishing typical load patterns, a k-means clustering method was applied. The relationship between meteorological parameters and load was also tested based on multiple linear regression analysis. The results indicated that energy demand had a relatively strong positive correlation with irradiation and with temperature and a negative one with humidity. The correlation with wind speed was not greater than 0.25. Dividing the data into three subsets shows that energy demand generally exhibits a stronger correlation with meteorological parameters on working days. Additionally, clustering analysis has shown that it is possible to distinguish three typical daily patterns of energy demand and meteorological parameters that correspond to a hot/warm day, cold days and days that are intermediary between those two. The regression analysis showed that meteorological parameters can explain/model a significant part of the load variability (up to 50%) although the quality of such models is relatively poor (in terms of mean absolute percentage error the best model exhibited a value of 16%). The results of this study can be used as a benchmark for similar office buildings that received the same level of sustainability certification, or in the future analysis of climate change impact on power demand.

Suggested Citation

  • Jerzy Mikulik, 2018. "Energy Demand Patterns in an Office Building: A Case Study in Kraków (Southern Poland)," Sustainability, MDPI, vol. 10(8), pages 1-16, August.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2901-:d:164000
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/8/2901/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/8/2901/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lucheng Hong & Wantao Shu & Angela C. Chao, 2018. "Recurrence Interval Analysis on Electricity Consumption of an Office Building in China," Sustainability, MDPI, vol. 10(2), pages 1-15, January.
    2. Chung, Mo & Park, Hwa-Choon, 2012. "Building energy demand patterns for department stores in Korea," Applied Energy, Elsevier, vol. 90(1), pages 241-249.
    3. Zesen Wang & Yanmei Tang & Xiao Chen & Xiangyang Men & Jun Cao & Haifeng Wang, 2018. "Optimized Daily Dispatching Strategy of Building- Integrated Energy Systems Considering Vehicle to Grid Technology and Room Temperature Control," Energies, MDPI, vol. 11(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chadly, Assia & Azar, Elie & Maalouf, Maher & Mayyas, Ahmad, 2022. "Techno-economic analysis of energy storage systems using reversible fuel cells and rechargeable batteries in green buildings," Energy, Elsevier, vol. 247(C).
    2. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Evaluation of Thermal Comfort and Energy Consumption of Water Flow Glazing as a Radiant Heating and Cooling System: A Case Study of an Office Space," Sustainability, MDPI, vol. 12(18), pages 1-27, September.
    3. José Luis Fuentes-Bargues & José-Luis Vivancos & Pablo Ferrer-Gisbert & Miguel Ángel Gimeno-Guillem, 2020. "Analysis of the Impact of Different Variables on the Energy Demand in Office Buildings," Sustainability, MDPI, vol. 12(13), pages 1-23, July.
    4. Andrea Ferrantelli & Helena Kuivjõgi & Jarek Kurnitski & Martin Thalfeldt, 2020. "Office Building Tenants’ Electricity Use Model for Building Performance Simulations," Energies, MDPI, vol. 13(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monica Arnaudo & Monika Topel & Björn Laumert, 2020. "Vehicle-To-Grid for Peak Shaving to Unlock the Integration of Distributed Heat Pumps in a Swedish Neighborhood," Energies, MDPI, vol. 13(7), pages 1-13, April.
    2. Lim, Jae-Han & Song, Jin-Hee & Song, Seung-Yeong, 2014. "Development of operational guidelines for thermally activated building system according to heating and cooling load characteristics," Applied Energy, Elsevier, vol. 126(C), pages 123-135.
    3. Sergio Ortega Alba & Mario Manana, 2017. "Characterization and Analysis of Energy Demand Patterns in Airports," Energies, MDPI, vol. 10(1), pages 1-35, January.
    4. Yonghoon Im, 2022. "Assessment of the Impact of Renewable Energy Expansion on the Technological Competitiveness of the Cogeneration Model," Energies, MDPI, vol. 15(18), pages 1-27, September.
    5. Apadula, Francesco & Bassini, Alessandra & Elli, Alberto & Scapin, Simone, 2012. "Relationships between meteorological variables and monthly electricity demand," Applied Energy, Elsevier, vol. 98(C), pages 346-356.
    6. Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
    7. Song, Jeonghun & Oh, Si-Doek & Song, Seung Jin, 2019. "Effect of increased building-integrated renewable energy on building energy portfolio and energy flows in an urban district of Korea," Energy, Elsevier, vol. 189(C).
    8. Karain, Wael I., 2019. "Investigating large-amplitude protein loop motions as extreme events using recurrence interval analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 520(C), pages 1-10.
    9. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & D'Amico, Antonino, 2019. "Results of a literature review on methods for estimating buildings energy demand at district level," Energy, Elsevier, vol. 175(C), pages 1130-1137.
    10. Guozhong Liu & Li Kang & Zeyu Luan & Jing Qiu & Fenglei Zheng, 2019. "Charging Station and Power Network Planning for Integrated Electric Vehicles (EVs)," Energies, MDPI, vol. 12(13), pages 1-22, July.
    11. Jesús Rodríguez-Molina & Pedro Castillejo & Victoria Beltran & Margarita Martínez-Núñez, 2020. "A Model for Cost–Benefit Analysis of Privately Owned Vehicle-to-Grid Solutions," Energies, MDPI, vol. 13(21), pages 1-38, November.
    12. Yeo, In-Ae & Yoon, Seong-Hwan & Yee, Jurng-Jae, 2013. "Development of an urban energy demand forecasting system to support environmentally friendly urban planning," Applied Energy, Elsevier, vol. 110(C), pages 304-317.
    13. Youn, Young Jik & Im, Yong Hoon, 2023. "Assessment of the feasibility for hybrid seawater district cooling model under variable seawater temperature condition: Case study in South Korea," Renewable Energy, Elsevier, vol. 218(C).
    14. Young-Jik Youn & Yong-Hoon Im, 2022. "Technical Feasibility Assessment for a Novel Fifth-Generation District Heating Model of Interconnected Operation with a Large-Scale Building," Sustainability, MDPI, vol. 14(19), pages 1-30, October.
    15. Song, Jeonghun & Song, Seung Jin, 2020. "A framework for analyzing city-wide impact of building-integrated renewable energy," Applied Energy, Elsevier, vol. 276(C).
    16. Mikkola, Jani & Lund, Peter D., 2014. "Models for generating place and time dependent urban energy demand profiles," Applied Energy, Elsevier, vol. 130(C), pages 256-264.
    17. Saeid Bashash & Kai Lun Lee, 2019. "Automatic Coordination of Internet-Connected Thermostats for Power Balancing and Frequency Control in Smart Microgrids," Energies, MDPI, vol. 12(10), pages 1-23, May.
    18. Fei Wang & Wei Chao, 2018. "A New Perspective on Improving Hospital Energy Administration Based on Recurrence Interval Analysis," Energies, MDPI, vol. 11(5), pages 1-18, May.
    19. Xinjia Gao & Ran Li & Siqi Chen & Yalun Li, 2023. "Potential Analysis and Optimal Management of Winter Electric Heating in Rural China Based on V2H Technology," Sustainability, MDPI, vol. 15(15), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:8:p:2901-:d:164000. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.