IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics0360544222002572.html
   My bibliography  Save this article

A coordinated virtual impedance control scheme for three phase four leg inverters of electric vehicle to grid (V2G)

Author

Listed:
  • Çelik, Doğan
  • Meral, Mehmet Emin

Abstract

The three-phase four-leg (3p4L) inverter can be utilized to interface electric vehicles (EVs) with the distribution networks. Vehicle to grid (V2G) inverters are employed to charge EVs from the utility grid as well as compensating harmonics and unbalanced voltages & currents on demand. Motivated by this scenario, this paper proposes a coordinated virtual impedance control scheme for a vehicle to grid three phase four leg (V2G 3p4L) inverter. The proposed control scheme achieves simultaneously multifunctional objectives consisting of effective and good harmonic rejection capability, power sharing among V2G 3p4L inverter units with a smaller error, reactive power/voltage support during load power changes and balanced/unbalanced voltage sag conditions. An independently neutral current control approach is proposed for the fourth leg of the V2G 3p4L inverter to regulate the DC-link along with neutral current control capability. Besides, the proposed control scheme achieves grid connected mode (GCM) or standalone mode (SAM) operation capability as well as fulfilling smooth transition between operation modes without reconstructing control structure. Compared to well-known control schemes in the literature, synchronization during operation modes is also achieved without transients in voltage and current. Comprehensive tests under various scenarios validate the excellence of the proposed control scheme over existing methods.

Suggested Citation

  • Çelik, Doğan & Meral, Mehmet Emin, 2022. "A coordinated virtual impedance control scheme for three phase four leg inverters of electric vehicle to grid (V2G)," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002572
    DOI: 10.1016/j.energy.2022.123354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222002572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tan, Kang Miao & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tariq, Mohd, 2021. "Experimental verification of a flexible vehicle-to-grid charger for power grid load variance reduction," Energy, Elsevier, vol. 228(C).
    2. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    3. Rao, Yingqing & Yang, Jun & Xiao, Jinxing & Xu, Bingyan & Liu, Wenjing & Li, Yonghui, 2021. "A frequency control strategy for multimicrogrids with V2G based on the improved robust model predictive control," Energy, Elsevier, vol. 222(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hou, Jiazuo & Hu, Chenxi & Lei, Shunbo & Liang, Liang & Hou, Yunhe, 2024. "Security region of inverter-interfaced power systems: Existence, expansion, and application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peixiao Fan & Jia Hu & Song Ke & Yuxin Wen & Shaobo Yang & Jun Yang, 2022. "A Frequency–Pressure Cooperative Control Strategy of Multi-Microgrid with an Electric–Gas System Based on MADDPG," Sustainability, MDPI, vol. 14(14), pages 1-20, July.
    2. Tan, Kang Miao & Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Mansor, Muhamad & Teh, Jiashen & Guerrero, Josep M., 2023. "Factors influencing global transportation electrification: Comparative analysis of electric and internal combustion engine vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    3. Md. Shafiul Alam & Tanzi Ahmed Chowdhury & Abhishak Dhar & Fahad Saleh Al-Ismail & M. S. H. Choudhury & Md Shafiullah & Md. Ismail Hossain & Md. Alamgir Hossain & Aasim Ullah & Syed Masiur Rahman, 2023. "Solar and Wind Energy Integrated System Frequency Control: A Critical Review on Recent Developments," Energies, MDPI, vol. 16(2), pages 1-31, January.
    4. Pampa Sinha & Kaushik Paul & Sanchari Deb & Sulabh Sachan, 2023. "Comprehensive Review Based on the Impact of Integrating Electric Vehicle and Renewable Energy Sources to the Grid," Energies, MDPI, vol. 16(6), pages 1-39, March.
    5. Chaudhary, Aniket Karan & Roy, Satyabrata & Guha, Dipayan & Negi, Richa & Banerjee, Subrata, 2024. "Adaptive cyber-tolerant finite-time frequency control framework for renewable-integrated power system under deception and periodic denial-of-service attacks," Energy, Elsevier, vol. 302(C).
    6. Velaz-Acera, Néstor & Álvarez-García, Javier & Borge-Diez, David, 2023. "Economic and emission reduction benefits of the implementation of eVTOL aircraft with bi-directional flow as storage systems in islands and case study for Canary Islands," Applied Energy, Elsevier, vol. 331(C).
    7. Amjad, Muhammad & Farooq-i-Azam, Muhammad & Ni, Qiang & Dong, Mianxiong & Ansari, Ejaz Ahmad, 2022. "Wireless charging systems for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
    9. Yuxin Wen & Peixiao Fan & Jia Hu & Song Ke & Fuzhang Wu & Xu Zhu, 2022. "An Optimal Scheduling Strategy of a Microgrid with V2G Based on Deep Q-Learning," Sustainability, MDPI, vol. 14(16), pages 1-18, August.
    10. Taler, Dawid & Sobota, Tomasz & Jaremkiewicz, Magdalena & Taler, Jan, 2022. "Control of the temperature in the hot liquid tank by using a digital PID controller considering the random errors of the thermometer indications," Energy, Elsevier, vol. 239(PE).
    11. Shang, Yitong & Yu, Hang & Niu, Songyan & Shao, Ziyun & Jian, Linni, 2021. "Cyber-physical co-modeling and optimal energy dispatching within internet of smart charging points for vehicle-to-grid operation," Applied Energy, Elsevier, vol. 303(C).
    12. Juan Moreno-Castro & Victor Samuel Ocaña Guevara & Lesyani Teresa León Viltre & Yandi Gallego Landera & Oscar Cuaresma Zevallos & Miguel Aybar-Mejía, 2023. "Microgrid Management Strategies for Economic Dispatch of Electricity Using Model Predictive Control Techniques: A Review," Energies, MDPI, vol. 16(16), pages 1-24, August.
    13. Adlan Pradana & Mejbaul Haque & Mithulanathan Nadarajah, 2023. "Control Strategies of Electric Vehicles Participating in Ancillary Services: A Comprehensive Review," Energies, MDPI, vol. 16(4), pages 1-36, February.
    14. Wu, Chuanshen & Jiang, Sufan & Gao, Shan & Liu, Yu & Han, Haiteng, 2022. "Charging demand forecasting of electric vehicles considering uncertainties in a microgrid," Energy, Elsevier, vol. 247(C).
    15. Rahman, Md Mustafizur & Gemechu, Eskinder & Oni, Abayomi Olufemi & Kumar, Amit, 2023. "The development of a techno-economic model for assessment of cost of energy storage for vehicle-to-grid applications in a cold climate," Energy, Elsevier, vol. 262(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s0360544222002572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.