IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v244y2022ipas036054422102956x.html
   My bibliography  Save this article

Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale

Author

Listed:
  • Tian, Zhenhua
  • Wei, Wei
  • Zhou, Shangwen
  • Sun, Chenhao
  • Rezaee, Reza
  • Cai, Jianchao

Abstract

In this work, new integrated permeability models for micro-nanopores and fractal shale matrixes are constructed by coupling different transport mechanisms, adsorption phenomenon, and real gas effect. The applicability of these proposed models is verified by mathematical models, molecular dynamics simulation results, and experimental data. The impacts of gas properties on gas transport at the pore scale and the contributions of different transport mechanisms on gas flow at pore and core scale are analyzed. The apparent permeability at pore scale and core scale decreases with increasing pressure. The bulk gas transport in micropores is strongly reduced because of the adsorption of methane molecules. The real gas effect enhances both transition diffusion and surface diffusion under high pressure at pore scale. However, the effect of the real gas effect on the slip flow permeability is negligible. At pore scale, surface diffusion, transition diffusion, and slip flow successively dominate the gas transport with increasing pore diameter under lower pressure. At core scale, the dominating transport mechanism under lower pressure is mainly under the control of pore size distribution and gas type. For larger pores and shale matrixes, the Darcy's law is still effective for describing the gas permeability under higher pressure.

Suggested Citation

  • Tian, Zhenhua & Wei, Wei & Zhou, Shangwen & Sun, Chenhao & Rezaee, Reza & Cai, Jianchao, 2022. "Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale," Energy, Elsevier, vol. 244(PA).
  • Handle: RePEc:eee:energy:v:244:y:2022:i:pa:s036054422102956x
    DOI: 10.1016/j.energy.2021.122707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422102956X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Guoliang & Li, Guanfang & Luo, Chao & Zhou, Runqing & Zhou, Jian & Yang, Jijin, 2023. "Dynamic evolution of shale permeability under coupled temperature and effective stress conditions," Energy, Elsevier, vol. 266(C).
    2. Kasala, Erasto E. & Wang, Jinjie & Lwazi, Hussein M. & Nyakilla, Edwin E. & Kibonye, John S., 2024. "The influence of hydraulic fracture and reservoir parameters on the storage of CO2 and enhancing CH4 recovery in Yanchang formation," Energy, Elsevier, vol. 296(C).
    3. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    4. Xiaoyu Ju & Xiaodong Zhao & Boyu Zhou & Ruixue Zhang & Xinyu Wu & Dafa Guo, 2023. "Identification of Reservoir Water-Flooding Degrees via Core Sizes Based on a Drip Experiment of the Zhenwu Area in Gaoyou Sag, China," Energies, MDPI, vol. 16(2), pages 1-14, January.
    5. Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
    6. Donghuan Han & Tongwen Jiang & Wei Xiong & Shusheng Gao & Huaxun Liu & Liyou Ye & Wenqing Zhu & Weiguo An, 2024. "A New Method for Calculating the Influx Index in Gas-Drive Reservoirs: A Case Study of the Kela-2 Gas Field," Energies, MDPI, vol. 17(5), pages 1-23, February.
    7. Micheal, Marembo & Yu, Hao & Meng, SiWei & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Zhang, HouLin & Liu, He & Wu, HengAn, 2023. "Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events," Energy, Elsevier, vol. 278(C).
    8. Qin, Xiangjie & Wu, Jinsui & Xia, Yuxuan & Wang, Han & Cai, Jianchao, 2024. "Multicomponent image-based modeling of water flow in heterogeneous wet shale nanopores," Energy, Elsevier, vol. 298(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    2. Mohamed Mehana & Fangxuan Chen & Mashhad Fahes & Qinjun Kang & Hari Viswanathan, 2022. "Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs," Energies, MDPI, vol. 15(22), pages 1-13, November.
    3. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    4. Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    6. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    7. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    8. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    9. Li, Dafang & Sun, Weifu & Chen, Yangchaoyue, 2024. "Enhancing overpressure and velocity of methane detonation by adding sodium chlorate with a view to fracturing shale," Applied Energy, Elsevier, vol. 355(C).
    10. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    11. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Aba, Michael M. & Parente, Virginia & dos Santos, Edmilson Moutinho, 2022. "Estimation of water demand of the three major Brazilian shale-gas basins: Implications for water availability," Energy Policy, Elsevier, vol. 168(C).
    13. Zhao, Stephen & Alexandroff, Alan, 2019. "Current and future struggles to eliminate coal," Energy Policy, Elsevier, vol. 129(C), pages 511-520.
    14. Katende, Allan & Rutqvist, Jonny & Massion, Cody & Radonjic, Mileva, 2023. "Experimental flow-through a single fracture with monolayer proppant at reservoir conditions: A case study on Caney Shale, Southwest Oklahoma, USA," Energy, Elsevier, vol. 273(C).
    15. Sun, Chuanwang & Ding, Dan & Fang, Xingming & Zhang, Huiming & Li, Jianglong, 2019. "How do fossil energy prices affect the stock prices of new energy companies? Evidence from Divisia energy price index in China's market," Energy, Elsevier, vol. 169(C), pages 637-645.
    16. Feng, Gan & Kang, Yong & Sun, Ze-dong & Wang, Xiao-chuan & Hu, Yao-qing, 2019. "Effects of supercritical CO2 adsorption on the mechanical characteristics and failure mechanisms of shale," Energy, Elsevier, vol. 173(C), pages 870-882.
    17. Heping Yan & Xiurong Wu & Qiang Li & Yinghui Fang & Shuo Zhang, 2024. "Study on Geological Deformation of Supercritical CO 2 Sequestration in Oil Shale after In Situ Pyrolysis," Energies, MDPI, vol. 17(15), pages 1-17, August.
    18. Wang, Hui & Chen, Li & Qu, Zhiguo & Yin, Ying & Kang, Qinjun & Yu, Bo & Tao, Wen-Quan, 2020. "Modeling of multi-scale transport phenomena in shale gas production — A critical review," Applied Energy, Elsevier, vol. 262(C).
    19. Weige Han & Zhendong Cui & Zhengguo Zhu, 2021. "The Effect of Perforation Spacing on the Variation of Stress Shadow," Energies, MDPI, vol. 14(13), pages 1-16, July.
    20. Hong, Bingyuan & Li, Xiaoping & Song, Shangfei & Chen, Shilin & Zhao, Changlong & Gong, Jing, 2020. "Optimal planning and modular infrastructure dynamic allocation for shale gas production," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:244:y:2022:i:pa:s036054422102956x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.