IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i22p8557-d973871.html
   My bibliography  Save this article

Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs

Author

Listed:
  • Mohamed Mehana

    (Computational Earth Science Group, Los Alamos National Lab, Los Alamos, NM 87545, USA)

  • Fangxuan Chen

    (Department of Petroleum Engineering, Texas A&M University, College Station, TX 78412, USA)

  • Mashhad Fahes

    (Department of Petroleum Engineering, The University of Oklahoma, Norman, OK 73019, USA)

  • Qinjun Kang

    (Computational Earth Science Group, Los Alamos National Lab, Los Alamos, NM 87545, USA)

  • Hari Viswanathan

    (Computational Earth Science Group, Los Alamos National Lab, Los Alamos, NM 87545, USA)

Abstract

Field operations report that at least half of the fracturing fluid used in shale reservoirs is trapped. These trapped fluids can trigger various geochemical interactions. However, the impact of these interactions on well performance is still elusive. We modeled a hydraulic fracture stage where we simulated the initial conditions by injecting the fracturing fluid and shutting the well to allow the fluids to soak into the formation. Our results suggest a positive correlation between the dissolution and precipitation rates and the carbonate content of the rock. In addition, we observed that gas and load recovery are overestimated when geochemical interactions are overlooked. We also observed promising results for sea water as a good alternative fracturing fluid. Moreover, we observed better performance for cases with lower-saline connate water. The reactions of carbonates outweigh the reactions of clays in most cases. Sensitivity analysis suggests that the concentration of SO 4 , K and Na ions in the fracturing fluid, and the illite and calcite mineral content, along with the reservoir temperature, are the key factors affecting well performance. In conclusion, geochemical interactions should be considered for properly modeling the fate of the fracturing fluids and their impact on well performance.

Suggested Citation

  • Mohamed Mehana & Fangxuan Chen & Mashhad Fahes & Qinjun Kang & Hari Viswanathan, 2022. "Geochemical Modelling of the Fracturing Fluid Transport in Shale Reservoirs," Energies, MDPI, vol. 15(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8557-:d:973871
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/22/8557/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/22/8557/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Middleton, Richard S. & Gupta, Rajan & Hyman, Jeffrey D. & Viswanathan, Hari S., 2017. "The shale gas revolution: Barriers, sustainability, and emerging opportunities," Applied Energy, Elsevier, vol. 199(C), pages 88-95.
    2. Jiajia Bai & Guoqing Wang & Qingjie Zhu & Lei Tao & Wenyang Shi, 2022. "Investigation on Flowback Behavior of Imbibition Fracturing Fluid in Gas–Shale Multiscale Pore Structure," Energies, MDPI, vol. 15(20), pages 1-16, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen, Phong & Carey, J. William & Viswanathan, Hari S. & Porter, Mark, 2018. "Effectiveness of supercritical-CO2 and N2 huff-and-puff methods of enhanced oil recovery in shale fracture networks using microfluidic experiments," Applied Energy, Elsevier, vol. 230(C), pages 160-174.
    2. Zhang, Shuo & Song, Shengyuan & Zhang, Wen & Zhao, Jinmin & Cao, Dongfang & Ma, Wenliang & Chen, Zijian & Hu, Ying, 2023. "Research on the inherent mechanism of rock mass deformation of oil shale in-situ mining under the condition of thermal-fluid-solid coupling," Energy, Elsevier, vol. 280(C).
    3. Jin, Lu & Hawthorne, Steven & Sorensen, James & Pekot, Lawrence & Kurz, Bethany & Smith, Steven & Heebink, Loreal & Herdegen, Volker & Bosshart, Nicholas & Torres, José & Dalkhaa, Chantsalmaa & Peters, 2017. "Advancing CO2 enhanced oil recovery and storage in unconventional oil play—Experimental studies on Bakken shales," Applied Energy, Elsevier, vol. 208(C), pages 171-183.
    4. Crow, Daniel J.G. & Giarola, Sara & Hawkes, Adam D., 2018. "A dynamic model of global natural gas supply," Applied Energy, Elsevier, vol. 218(C), pages 452-469.
    5. Zhang, Lisong & Li, Jing & Sun, Luning & Yang, Feiyue, 2021. "An influence mechanism of shale barrier on heavy oil recovery using SAGD based on theoretical and numerical analysis," Energy, Elsevier, vol. 216(C).
    6. Piotr Słomski & Maria Mastalerz & Jacek Szczepański & Arkadiusz Derkowski & Tomasz Topór & Marcin Lutyński, 2020. "Experimental and numerical investigation of CO2–brine–rock interactions in the early Palaeozoic mudstones from the Polish part of the Baltic Basin at simulatedin situ conditions," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(3), pages 567-590, June.
    7. Afees Adebare Salisu & Idris A. Adediran, 2018. "The U.S. Shale Oil Revolution and the Behavior of Commodity Prices," Econometric Research in Finance, SGH Warsaw School of Economics, Collegium of Economic Analysis, vol. 3(1), pages 27-53, September.
    8. Zijun Huang & Dedong He & Weihua Deng & Guowu Jin & Ke Li & Yongming Luo, 2023. "Illustrating new understanding of adsorbed water on silica for inducing tetrahedral cobalt(II) for propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Jin, Xu & Wang, Xiaoqi & Yan, Weipeng & Meng, Siwei & Liu, Xiaodan & Jiao, Hang & Su, Ling & Zhu, Rukai & Liu, He & Li, Jianming, 2019. "Exploration and casting of large scale microscopic pathways for shale using electrodeposition," Applied Energy, Elsevier, vol. 247(C), pages 32-39.
    10. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
    11. Anthony N. Rezitis & Panagiotis Andrikopoulos & Theodoros Daglis, 2024. "Assessing the asymmetric volatility linkages of energy and agricultural commodity futures during low and high volatility regimes," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(3), pages 451-483, March.
    12. Xiaoping Li & Shudong Liu & Ji Li & Xiaohua Tan & Yilong Li & Feng Wu, 2020. "Apparent Permeability Model for Gas Transport in Multiscale Shale Matrix Coupling Multiple Mechanisms," Energies, MDPI, vol. 13(23), pages 1-24, November.
    13. Wang, Yan & Zhong, Dong-Liang & Li, Zheng & Li, Jian-Bo, 2020. "Application of tetra-n-butyl ammonium bromide semi-clathrate hydrate for CO2 capture from unconventional natural gases," Energy, Elsevier, vol. 197(C).
    14. Bauer, Fredric & Fontenit, Germain, 2021. "Plastic dinosaurs – Digging deep into the accelerating carbon lock-in of plastics," Energy Policy, Elsevier, vol. 156(C).
    15. Li, Dafang & Sun, Weifu & Chen, Yangchaoyue, 2024. "Enhancing overpressure and velocity of methane detonation by adding sodium chlorate with a view to fracturing shale," Applied Energy, Elsevier, vol. 355(C).
    16. Li, Boying & Zheng, Mingbo & Zhao, Xinxin & Chang, Chun-Ping, 2021. "An assessment of the effect of partisan ideology on shale gas production and the implications for environmental regulations," Economic Systems, Elsevier, vol. 45(3).
    17. Zhou, Wei & Li, Xiangchengzhen & Qi, ZhongLi & Zhao, HaiHang & Yi, Jun, 2024. "A shale gas production prediction model based on masked convolutional neural network," Applied Energy, Elsevier, vol. 353(PA).
    18. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Jong-Hyun Kim & Yong-Gil Lee, 2017. "Analyzing the Learning Path of US Shale Players by Using the Learning Curve Method," Sustainability, MDPI, vol. 9(12), pages 1-8, December.
    20. Andres Soage & Ruben Juanes & Ignasi Colominas & Luis Cueto-Felgueroso, 2021. "The Impact of the Geometry of the Effective Propped Volume on the Economic Performance of Shale Gas Well Production," Energies, MDPI, vol. 14(9), pages 1-22, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:22:p:8557-:d:973871. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.