IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p1076-d1344941.html
   My bibliography  Save this article

A New Method for Calculating the Influx Index in Gas-Drive Reservoirs: A Case Study of the Kela-2 Gas Field

Author

Listed:
  • Donghuan Han

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China
    Institute of Porous Flow and Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China)

  • Tongwen Jiang

    (Department of Science and Technology Management, PetroChina Company Limited, Beijing 100007, China)

  • Wei Xiong

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Shusheng Gao

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Huaxun Liu

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Liyou Ye

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Wenqing Zhu

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

  • Weiguo An

    (Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China)

Abstract

The calculation of the influx index is one of the most contentious issues in dynamic reserve evaluation of gas reservoirs’ development. For the influx index, it is key to obtain information on the pore compressibility coefficient under realistic gas reservoir pressure. So far, little is known about the assessment of the pore compressibility coefficient at a laboratory scale. Here, we combine observations of gas flowmeter, ISCO booster pump, intermediate container, and rock samples to quantify the pore compressibility coefficient from the KL2-13 well in the Kela-2 reservoir. Additionally, the iterative method (combined the static and dynamic methods) is proposed based on the experimentally obtained pore compressibility coefficient ( C f ), dynamic reserve ( G ), water body multiple ( β ), and material balance equation to calculate the influx index. The combined iterative method adjusts the values of G and N by comparing the results of the static and dynamic methods, and iteratively corrects C f using a binary search method until the results of the static and dynamic methods are consistent. The results of our study reveal that the influx index calculated by the dynamic and static methods was consistent, and the gas production per unit pressure drop matched the actual production. These results strongly suggest that there exists a correlation between formation pressure and the influx index, wherein the latter exhibits a gradual decrease as the former decreases. Conversely, the displacement index of both the rock and connate water do not demonstrate a significant dependence on pressure. Furthermore, the impact of pressure on the pore compressibility factor and reservoir water compressibility factor appears to be minimal. These findings hold substantial implications for understanding the behavior of gas reservoirs under varying pressure conditions.

Suggested Citation

  • Donghuan Han & Tongwen Jiang & Wei Xiong & Shusheng Gao & Huaxun Liu & Liyou Ye & Wenqing Zhu & Weiguo An, 2024. "A New Method for Calculating the Influx Index in Gas-Drive Reservoirs: A Case Study of the Kela-2 Gas Field," Energies, MDPI, vol. 17(5), pages 1-23, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1076-:d:1344941
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/1076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/1076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tian, Zhenhua & Wei, Wei & Zhou, Shangwen & Sun, Chenhao & Rezaee, Reza & Cai, Jianchao, 2022. "Impacts of gas properties and transport mechanisms on the permeability of shale at pore and core scale," Energy, Elsevier, vol. 244(PA).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Aitao & Li, Jingwen & Gong, Weili & Wang, Kai & Du, Changang, 2023. "Theoretical and numerical study on the contribution of multi-hole arrangement to coalbed methane extraction," Energy, Elsevier, vol. 284(C).
    2. Micheal, Marembo & Yu, Hao & Meng, SiWei & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Zhang, HouLin & Liu, He & Wu, HengAn, 2023. "Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events," Energy, Elsevier, vol. 278(C).
    3. Hou, Bing & Zhang, Qixing & Liu, Xing & Pang, Huiwen & Zeng, Yue, 2022. "Integration analysis of 3D fractures network reconstruction and frac hits response in shale wells," Energy, Elsevier, vol. 260(C).
    4. Xiaoyu Ju & Xiaodong Zhao & Boyu Zhou & Ruixue Zhang & Xinyu Wu & Dafa Guo, 2023. "Identification of Reservoir Water-Flooding Degrees via Core Sizes Based on a Drip Experiment of the Zhenwu Area in Gaoyou Sag, China," Energies, MDPI, vol. 16(2), pages 1-14, January.
    5. Li, Guoliang & Li, Guanfang & Luo, Chao & Zhou, Runqing & Zhou, Jian & Yang, Jijin, 2023. "Dynamic evolution of shale permeability under coupled temperature and effective stress conditions," Energy, Elsevier, vol. 266(C).
    6. Qin, Xiangjie & Wu, Jinsui & Xia, Yuxuan & Wang, Han & Cai, Jianchao, 2024. "Multicomponent image-based modeling of water flow in heterogeneous wet shale nanopores," Energy, Elsevier, vol. 298(C).
    7. Kasala, Erasto E. & Wang, Jinjie & Lwazi, Hussein M. & Nyakilla, Edwin E. & Kibonye, John S., 2024. "The influence of hydraulic fracture and reservoir parameters on the storage of CO2 and enhancing CH4 recovery in Yanchang formation," Energy, Elsevier, vol. 296(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:1076-:d:1344941. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.