IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v243y2022ics0360544221032515.html
   My bibliography  Save this article

Introducing electric vehicles? Impact of network effect on profits and social welfare

Author

Listed:
  • Hou, Rui
  • Lei, Lei
  • Jin, Kangning
  • Lin, Xiaogang
  • Xiao, Lu

Abstract

Electric vehicles enjoy not only vigorous promotion in many countries via green license plates but also state subsidies. This study investigates a traditional combustion-vehicle market and the coexistence of combustion and electric vehicles under the influence of network effects. It evaluates the impact of the greenness gap and network effect on their pricing, subsidies, and market returns, respectively. We then consider the conditions for introducing electric vehicles into the market. The results show that when the network effect is not considered, introducing electric vehicles is beneficial to customers, manufacturer and society. However, when the network effect is considered, introducing electric vehicles can increase manufacturer's profit and social welfare only when the fixed costs of the new product line are sufficiently low. Finally, electric vehicles should be introduced if the greenness gap between the two products is small because this can increase profit, consumer surplus, and social welfare.

Suggested Citation

  • Hou, Rui & Lei, Lei & Jin, Kangning & Lin, Xiaogang & Xiao, Lu, 2022. "Introducing electric vehicles? Impact of network effect on profits and social welfare," Energy, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032515
    DOI: 10.1016/j.energy.2021.123002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221032515
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.123002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fraccascia, Luca, 2020. "Quantifying the direct network effect for online platforms supporting industrial symbiosis: an agent-based simulation study," Ecological Economics, Elsevier, vol. 170(C).
    2. Shanjun Li & Lang Tong & Jianwei Xing & Yiyi Zhou, 2017. "The Market for Electric Vehicles: Indirect Network Effects and Policy Design," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(1), pages 89-133.
    3. Chialin Chen, 2001. "Design for the Environment: A Quality-Based Model for Green Product Development," Management Science, INFORMS, vol. 47(2), pages 250-263, February.
    4. Gass, V. & Schmidt, J. & Schmid, E., 2014. "Analysis of alternative policy instruments to promote electric vehicles in Austria," Renewable Energy, Elsevier, vol. 61(C), pages 96-101.
    5. Pohl, Hans & Yarime, Masaru, 2012. "Integrating innovation system and management concepts: The development of electric and hybrid electric vehicles in Japan," Technological Forecasting and Social Change, Elsevier, vol. 79(8), pages 1431-1446.
    6. Luo, Chunlin & Leng, Mingming & Huang, Jian & Liang, Liping, 2014. "Supply chain analysis under a price-discount incentive scheme for electric vehicles," European Journal of Operational Research, Elsevier, vol. 235(1), pages 329-333.
    7. Hoen, Anco & Koetse, Mark J., 2014. "A choice experiment on alternative fuel vehicle preferences of private car owners in the Netherlands," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 199-215.
    8. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    9. Silvia, Chris & Krause, Rachel M., 2016. "Assessing the impact of policy interventions on the adoption of plug-in electric vehicles: An agent-based model," Energy Policy, Elsevier, vol. 96(C), pages 105-118.
    10. Dawoon Jung & Byung Cho Kim & Myungsub Park & Detmar W. Straub, 2019. "Innovation and Policy Support for Two-Sided Market Platforms: Can Government Policy Makers and Executives Optimize Both Societal Value and Profits?," Information Systems Research, INFORMS, vol. 30(3), pages 1037-1050, September.
    11. Xingping Zhang & Jian Xie & Rao Rao & Yanni Liang, 2014. "Policy Incentives for the Adoption of Electric Vehicles across Countries," Sustainability, MDPI, vol. 6(11), pages 1-23, November.
    12. Jui-Che Tu & Chun Yang, 2019. "Key Factors Influencing Consumers’ Purchase of Electric Vehicles," Sustainability, MDPI, vol. 11(14), pages 1-22, July.
    13. Münzel, Christiane & Plötz, Patrick & Sprei, Frances & Gnann, Till, 2019. "How large is the effect of financial incentives on electric vehicle sales? – A global review and European analysis," Energy Economics, Elsevier, vol. 84(C).
    14. Diamond, David, 2009. "The impact of government incentives for hybrid-electric vehicles: Evidence from US states," Energy Policy, Elsevier, vol. 37(3), pages 972-983, March.
    15. Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
    16. Lévay, Petra Zsuzsa & Drossinos, Yannis & Thiel, Christian, 2017. "The effect of fiscal incentives on market penetration of electric vehicles: A pairwise comparison of total cost of ownership," Energy Policy, Elsevier, vol. 105(C), pages 524-533.
    17. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    18. Ji, Shou-feng & Zhao, Dan & Luo, Rong-juan, 2019. "Evolutionary game analysis on local governments and manufacturers' behavioral strategies: Impact of phasing out subsidies for new energy vehicles," Energy, Elsevier, vol. 189(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesar Eduardo Leite & Sérgio Ronaldo Granemann & Ari Melo Mariano & Leise Kelli de Oliveira, 2022. "Opinion of Residents about the Freight Transport and Its Influence on the Quality of Life: An Analysis for Brasília (Brazil)," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    2. Xu, Dongxin & Pan, Yongjun & Zhang, Xiaoxi & Dai, Wei & Liu, Binghe & Shuai, Qi, 2024. "Data-driven modelling and evaluation of a battery-pack system’s mechanical safety against bottom cone impact," Energy, Elsevier, vol. 290(C).
    3. Phillip K. Agbesi & Rico Ruffino & Marko Hakovirta, 2023. "The development of sustainable electric vehicle business ecosystems," SN Business & Economics, Springer, vol. 3(8), pages 1-59, August.
    4. Liu, Xiaoxi, 2024. "The introduction and market expansion effects of green products considering network externalities," Omega, Elsevier, vol. 124(C).
    5. Liu, Jing & Li, Lingyue & He, Lingling & Ma, Xiaozhi & Yuan, Hongping, 2024. "Consumers or infrastructure firms? Who should the government subsidize to promote electric vehicle adoption when considering the indirect network and herd effects," Transport Policy, Elsevier, vol. 149(C), pages 163-176.
    6. Yu, Liukai & Zheng, Junjun & Ma, Gang & Jiao, Yangyang, 2023. "Analyzing the evolution trend of energy conservation and carbon reduction in transportation with promoting electrification in China," Energy, Elsevier, vol. 263(PD).
    7. Tang, Juan & Ji, Guan-Qun & Liu, Zhi & Sheu, Jiuh-Biing, 2024. "Electric vehicle battery-charging service and operations managing under different charging station construction modes," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    8. Nandan Gopinathan & Prabhakar Karthikeyan Shanmugam, 2022. "Energy Anxiety in Decentralized Electricity Markets: A Critical Review on EV Models," Energies, MDPI, vol. 15(14), pages 1-40, July.
    9. Zhou, Xingyu & Sun, Chao & Sun, Fengchun & Zhang, Chuntao, 2023. "Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency," Applied Energy, Elsevier, vol. 344(C).
    10. Aissa Benhammou & Mohammed Amine Hartani & Hamza Tedjini & Hegazy Rezk & Mujahed Al-Dhaifallah, 2023. "Improvement of Autonomy, Efficiency, and Stress of Fuel Cell Hybrid Electric Vehicle System Using Robust Controller," Sustainability, MDPI, vol. 15(7), pages 1-21, March.
    11. Zhang, Qi & Liu, Jiangfeng & Yang, Kexin & Liu, Boyu & Wang, Ge, 2022. "Market adoption simulation of electric vehicle based on social network model considering nudge policies," Energy, Elsevier, vol. 259(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alali, Layla & Niesten, Eva & Gagliardi, Dimitri, 2022. "The impact of UK financial incentives on the adoption of electric fleets: The moderation effect of GDP change," Transportation Research Part A: Policy and Practice, Elsevier, vol. 161(C), pages 200-220.
    2. Austmann, Leonhard M. & Vigne, Samuel A., 2021. "Does environmental awareness fuel the electric vehicle market? A Twitter keyword analysis," Energy Economics, Elsevier, vol. 101(C).
    3. Nathan Delacrétaz & Bruno Lanz & Jeremy van Dijk, 2020. "The chicken or the egg: Technology adoption and network infrastructure in the market for electric vehicles," IRENE Working Papers 20-08, IRENE Institute of Economic Research.
    4. Xingping Zhang & Jian Xie & Rao Rao & Yanni Liang, 2014. "Policy Incentives for the Adoption of Electric Vehicles across Countries," Sustainability, MDPI, vol. 6(11), pages 1-23, November.
    5. Meunier, Guy & Ponssard, Jean-Pierre, 2020. "Optimal policy and network effects for the deployment of zero emission vehicles," European Economic Review, Elsevier, vol. 126(C).
    6. Azarafshar, Roshanak & Vermeulen, Wessel N., 2020. "Electric vehicle incentive policies in Canadian provinces," Energy Economics, Elsevier, vol. 91(C).
    7. Goel, Pooja & Kumar, Aalok & Parayitam, Satyanarayana & Luthra, Sunil, 2023. "Understanding transport users' preferences for adopting electric vehicle based mobility for sustainable city: A moderated moderated-mediation model," Journal of Transport Geography, Elsevier, vol. 106(C).
    8. Srivastava, Abhishek & Kumar, Rajeev Ranjan & Chakraborty, Abhishek & Mateen, Arqum & Narayanamurthy, Gopalakrishnan, 2022. "Design and selection of government policies for electric vehicles adoption: A global perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    9. Zhang, Junjie & Jia, Rongwen & Yang, Hangjun & Dong, Kangyin, 2022. "Does electric vehicle promotion in the public sector contribute to urban transport carbon emissions reduction?," Transport Policy, Elsevier, vol. 125(C), pages 151-163.
    10. Koch, Nicolas & Ritter, Nolan & Rohlf, Alexander & Scarazzato, Francesco, 2022. "When is the electric vehicle market self-sustaining? Evidence from Norway," Energy Economics, Elsevier, vol. 110(C).
    11. Shafiei, Ehsan & Davidsdottir, Brynhildur & Fazeli, Reza & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2018. "Macroeconomic effects of fiscal incentives to promote electric vehicles in Iceland: Implications for government and consumer costs," Energy Policy, Elsevier, vol. 114(C), pages 431-443.
    12. Liu, Xiaoling & Sun, Xiaohua & Zheng, Hui & Huang, Dongdong, 2021. "Do policy incentives drive electric vehicle adoption? Evidence from China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 150(C), pages 49-62.
    13. Kwon, Yeongmin & Son, Sanghoon & Jang, Kitae, 2018. "Evaluation of incentive policies for electric vehicles: An experimental study on Jeju Island," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 404-412.
    14. Zhang, Juan & Huang, Jian, 2021. "Vehicle product-line strategy under government subsidy programs for electric/hybrid vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    15. Jinru Wang & Zhenwu Shi & Jie Liu & Hongrui Zhang, 2023. "Promoting “NEVs Pilot Policy” as an Effective Way for Reducing Urban Transport Carbon Emissions: Empirical Evidence from China," Sustainability, MDPI, vol. 15(14), pages 1-24, July.
    16. Harrison, Gillian & Thiel, Christian, 2017. "An exploratory policy analysis of electric vehicle sales competition and sensitivity to infrastructure in Europe," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 165-178.
    17. Meilinda Fitriani Nur Maghfiroh & Andante Hadi Pandyaswargo & Hiroshi Onoda, 2021. "Current Readiness Status of Electric Vehicles in Indonesia: Multistakeholder Perceptions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.
    18. Shang, Wen-Long & Zhang, Junjie & Wang, Kun & Yang, Hangjun & Ochieng, Washington, 2024. "Can financial subsidy increase electric vehicle (EV) penetration---evidence from a quasi-natural experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    19. Li, Wenbo & Long, Ruyin & Chen, Hong, 2016. "Consumers’ evaluation of national new energy vehicle policy in China: An analysis based on a four paradigm model," Energy Policy, Elsevier, vol. 99(C), pages 33-41.
    20. Zhang, Lei & Qin, Quande, 2018. "China’s new energy vehicle policies: Evolution, comparison and recommendation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 57-72.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:243:y:2022:i:c:s0360544221032515. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.