IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v3y1993i6p585-590.html
   My bibliography  Save this article

Degradation of photovoltaic cell performance due to dust deposition on to its surface

Author

Listed:
  • El-Shobokshy, Mohammad S.
  • Hussein, Fahmy M.

Abstract

The effects of dust accumulation on the surface of photovoltaic cells were experimentally investigated. The dust used in this study was prepared in the laboratory from known materials, then examined under an optical microscope to determine the size distribution of the particles. The two main parameters of the size distribution were determined, namely, the mean diameter and the standard deviation. A solar simulator consisting of halogen lamps was used to carry out controlled experiments. The dust particles were dispersed uniformly over the test photovoltaic panel and the IV characteristics were determined. The dust deposition density in g/m2 of panel surface area was determined in each test run. The effect of dust deposition density on the short circuit current, output power and the fill factor was determined and discussed. It was concluded that dust accumulation considerably deteriorates the performance of the photovoltaic cells. However, in carrying out the investigation on the effect of dust and particulate pollution, the physical characteristics of dust must be determined and correlated to the observed effects.

Suggested Citation

  • El-Shobokshy, Mohammad S. & Hussein, Fahmy M., 1993. "Degradation of photovoltaic cell performance due to dust deposition on to its surface," Renewable Energy, Elsevier, vol. 3(6), pages 585-590.
  • Handle: RePEc:eee:renene:v:3:y:1993:i:6:p:585-590
    DOI: 10.1016/0960-1481(93)90064-N
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/096014819390064N
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/0960-1481(93)90064-N?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:3:y:1993:i:6:p:585-590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.