IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124016823.html
   My bibliography  Save this article

Effect of different PV modules surface energies and surface types on the particle deposition characteristics and PV efficiency

Author

Listed:
  • Han, Zunshi
  • Lu, Hao
  • Zhao, Wenjun

Abstract

The particle deposition behavior of solar photovoltaic (PV) modules and its effect on PV efficiency were numerically investigated using computational fluid dynamics (CFD) methods. The surface flow field of PV modules using the shear stress transfer (SST) k-ω model with a user-defined function (UDF) for the development of entrance boundaries is predicted. A UDF coupled discrete phase model (DPM) that takes into account wall bounce and hydrophobic properties is used to predict particulate deposition in the flow field. Mesh independence and average pressure coefficients are verified. The effects of particle diameter, boundary type, surface energy and surface type on particle deposition of PV panel and PV efficiency are investigated. The results show that the smaller the surface energy γ, the smaller the particle deposition rate. At dp = 150 μm, γ = 0.001J/m2, it showed that the most significant reduction of 427.3 % in particle deposition rate compared to the trap boundary type, and γ = 0.001J/m2 showed a 210 % reduction in particle deposition rate compared to γ = 0.1J/m2. However, at dp ≤ 50 μm, the change in surface energy has little effect on the deposition rate. The effect of convex PV modules on particle deposition is more obvious at low surface energy (γ ≤ 0.001J/m2) compared to planar. The reduction in PV efficiency caused by particle deposition at different surface energies is predicted using an empirical model of PV output reductions developed by the researcher.

Suggested Citation

  • Han, Zunshi & Lu, Hao & Zhao, Wenjun, 2024. "Effect of different PV modules surface energies and surface types on the particle deposition characteristics and PV efficiency," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016823
    DOI: 10.1016/j.renene.2024.121614
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124016823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121614?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J.K. & Kokala, A., 2010. "Quantifying the decrease of the photovoltaic panels’ energy yield due to phenomena of natural air pollution disposal," Energy, Elsevier, vol. 35(12), pages 4862-4869.
    2. L. Kruitwagen & K. T. Story & J. Friedrich & L. Byers & S. Skillman & C. Hepburn, 2021. "A global inventory of photovoltaic solar energy generating units," Nature, Nature, vol. 598(7882), pages 604-610, October.
    3. Adinoyi, Muhammed J. & Said, Syed A.M., 2013. "Effect of dust accumulation on the power outputs of solar photovoltaic modules," Renewable Energy, Elsevier, vol. 60(C), pages 633-636.
    4. Dida, Mustapha & Boughali, Slimane & Bechki, Djamel & Bouguettaia, Hamza, 2020. "Output power loss of crystalline silicon photovoltaic modules due to dust accumulation in Saharan environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    5. Chen, Jinxin & Pan, Guobing & Ouyang, Jing & Ma, Jin & Fu, Lei & Zhang, Libin, 2020. "Study on impacts of dust accumulation and rainfall on PV power reduction in East China," Energy, Elsevier, vol. 194(C).
    6. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    7. Lu, Hao & Zhao, Wenjun, 2018. "Effects of particle sizes and tilt angles on dust deposition characteristics of a ground-mounted solar photovoltaic system," Applied Energy, Elsevier, vol. 220(C), pages 514-526.
    8. Saidan, Motasem & Albaali, Abdul Ghani & Alasis, Emil & Kaldellis, John K., 2016. "Experimental study on the effect of dust deposition on solar photovoltaic panels in desert environment," Renewable Energy, Elsevier, vol. 92(C), pages 499-505.
    9. Pan, Anjian & Lu, Hao & Zhang, Li-Zhi, 2019. "Experimental investigation of dust deposition reduction on solar cell covering glass by different self-cleaning coatings," Energy, Elsevier, vol. 181(C), pages 645-653.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhe & Liu, Jia & Yang, Hongxing, 2021. "Air pollution and soiling implications for solar photovoltaic power generation: A comprehensive review," Applied Energy, Elsevier, vol. 298(C).
    2. He, Beihua & Lu, Hao & Zheng, Chuanxiao & Wang, Yanlin, 2023. "Characteristics and cleaning methods of dust deposition on solar photovoltaic modules-A review," Energy, Elsevier, vol. 263(PE).
    3. Yao, Wanxiang & Xu, Ai & Kong, Xiangru & Wang, Yan & Li, Xianli & Gao, Weijun, 2024. "Analysis of dust deposition law at the micro level and its impact on the annual performance of photovoltaic modules," Energy, Elsevier, vol. 306(C).
    4. Yao, Wanxiang & Kong, Xiangru & Xu, Ai & Xu, Puyan & Wang, Yan & Gao, Weijun, 2023. "New models for the influence of rainwater on the performance of photovoltaic modules under different rainfall conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    5. Carmen Otilia Rusănescu & Marin Rusănescu & Irina Aura Istrate & Gabriel Alexandru Constantin & Mihaela Begea, 2023. "The Effect of Dust Deposition on the Performance of Photovoltaic Panels," Energies, MDPI, vol. 16(19), pages 1-20, September.
    6. Huang, Pengluan & Hu, Guoqiang & Zhao, Xiaodong & Lu, Luyi & Ding, Honggang & Li, Jianlan, 2022. "Effect of organics on the adhesion of dust to PV panel surfaces under condensation," Energy, Elsevier, vol. 261(PB).
    7. Enaganti, Prasanth K. & Bhattacharjee, Ankur & Ghosh, Aritra & Chanchangi, Yusuf N. & Chakraborty, Chanchal & Mallick, Tapas K. & Goel, Sanket, 2022. "Experimental investigations for dust build-up on low-iron glass exterior and its effects on the performance of solar PV systems," Energy, Elsevier, vol. 239(PC).
    8. You, Siming & Lim, Yu Jie & Dai, Yanjun & Wang, Chi-Hwa, 2018. "On the temporal modelling of solar photovoltaic soiling: Energy and economic impacts in seven cities," Applied Energy, Elsevier, vol. 228(C), pages 1136-1146.
    9. Karim Menoufi, 2017. "Dust Accumulation on the Surface of Photovoltaic Panels: Introducing the Photovoltaic Soiling Index (PVSI)," Sustainability, MDPI, vol. 9(6), pages 1-12, June.
    10. Iman El-Mahallawi & Engy Elshazly & Mohamed Ramadan & Reem Nasser & Moaaz Yasser & Seif El-Badry & Mahmoud Elthakaby & Olugbenga Timo Oladinrin & Muhammad Qasim Rana, 2022. "Solar PV Panels-Self-Cleaning Coating Material for Egyptian Climatic Conditions," Sustainability, MDPI, vol. 14(17), pages 1-13, September.
    11. Rehman, Tauseef-ur & Qaisrani, Mumtaz A. & Shafiq, M. Basit & Baba, Yousra Filali & Aslfattahi, Navid & Shahsavar, Amin & Cheema, Taqi Ahmad & Park, Cheol Woo, 2025. "Global perspectives on advancing photovoltaic system performance—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Zhao, Weiping & Lv, Yukun & Zhou, Qingwen & Yan, Weiping, 2021. "Investigation on particle deposition criterion and dust accumulation impact on solar PV module performance," Energy, Elsevier, vol. 233(C).
    13. Gowtham Vedulla & Anbazhagan Geetha & Ramalingam Senthil, 2022. "Review of Strategies to Mitigate Dust Deposition on Solar Photovoltaic Systems," Energies, MDPI, vol. 16(1), pages 1-28, December.
    14. Pankaj Borah & Leonardo Micheli & Nabin Sarmah, 2023. "Analysis of Soiling Loss in Photovoltaic Modules: A Review of the Impact of Atmospheric Parameters, Soil Properties, and Mitigation Approaches," Sustainability, MDPI, vol. 15(24), pages 1-26, December.
    15. Alkharusi, Tarik & Huang, Gan & Markides, Christos N., 2024. "Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance," Renewable Energy, Elsevier, vol. 220(C).
    16. Wu, Yubo & Du, Jianqiang & Liu, Guangxin & Ma, Danzhu & Jia, Fengrui & Klemeš, Jiří Jaromír & Wang, Jin, 2022. "A review of self-cleaning technology to reduce dust and ice accumulation in photovoltaic power generation using superhydrophobic coating," Renewable Energy, Elsevier, vol. 185(C), pages 1034-1061.
    17. Chanchangi, Yusuf N. & Ghosh, Aritra & Micheli, Leonardo & Fernández, Eduardo F. & Sundaram, Senthilarasu & Mallick, Tapas K., 2022. "Soiling mapping through optical losses for Nigeria," Renewable Energy, Elsevier, vol. 197(C), pages 995-1008.
    18. Conceição, Ricardo & González-Aguilar, José & Merrouni, Ahmed Alami & Romero, Manuel, 2022. "Soiling effect in solar energy conversion systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    19. Erdenedavaa, Purevdalai & Akisawa, Atsushi & Adiyabat, Amarbayar & Otgonjanchiv, Erdenesuvd, 2019. "Observation and modeling of dust deposition on glass tube of evacuated solar thermal collectors in Mongolia," Renewable Energy, Elsevier, vol. 130(C), pages 613-621.
    20. Ramli, Makbul A.M. & Prasetyono, Eka & Wicaksana, Ragil W. & Windarko, Novie A. & Sedraoui, Khaled & Al-Turki, Yusuf A., 2016. "On the investigation of photovoltaic output power reduction due to dust accumulation and weather conditions," Renewable Energy, Elsevier, vol. 99(C), pages 836-844.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124016823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.