IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v188y2017icp121-129.html
   My bibliography  Save this article

Performance study and application of new coal-fired boiler flue gas heat recovery system

Author

Listed:
  • Wei, Maolin
  • Zhao, Xiling
  • Fu, Lin
  • Zhang, Shigang

Abstract

The recovery of heat from the flue gas is an effective way to improve the thermal efficiency of a boiler. In a coal-fired boiler with wet-desulphurization, a portion of the flue gas thermal energy is used for the latent heat process, which leads to temperature reduction and humidity increase. Although it still contains significant heat, flue gas without sulfur cannot be further utilized; as such, in conventional systems, it is directly exhausted. This paper proposes a new system that utilizes the remaining heat in sulfur-reduced flue gas, where direct-contact heat transfer and absorption technologies are used to even further reduce the exhausted flue gas temperature. Here, not only is the heat recovered, but waste water is also reused as the make-up water in the flue gas desulphurization (FGD) tower. An engineering application analysis provides a detailed account of the system thermodynamic characteristics, economic profitability, and pollutant emission reduction effects. The results show that the boiler efficiency improves by 3.2 percentage point when the exhaust temperature decreases to 39°C. Also, the pressure drop in the heat exchanger remains below 400Pa, which results in low extra electricity consumption. The direct-cooling treatment removes 59% of sulfur dioxide and 8.8% of nitrogen dioxide. The investment is 28.8million RMB and the annual net revenue is 7.4million RMB, with a static payback period of 3.8years; as such, it is commercially viable. In summary, the new system simultaneously saves energy, saves water, and reduces pollutant emissions.

Suggested Citation

  • Wei, Maolin & Zhao, Xiling & Fu, Lin & Zhang, Shigang, 2017. "Performance study and application of new coal-fired boiler flue gas heat recovery system," Applied Energy, Elsevier, vol. 188(C), pages 121-129.
  • Handle: RePEc:eee:appene:v:188:y:2017:i:c:p:121-129
    DOI: 10.1016/j.apenergy.2016.11.132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916317639
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.11.132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Chaojun & He, Boshu & Sun, Shaoyang & Wu, Ying & Yan, Na & Yan, Linbo & Pei, Xiaohui, 2012. "Application of a low pressure economizer for waste heat recovery from the exhaust flue gas in a 600 MW power plant," Energy, Elsevier, vol. 48(1), pages 196-202.
    2. Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
    3. Westerlund, Lars & Hermansson, Roger & Fagerström, Jonathan, 2012. "Flue gas purification and heat recovery: A biomass fired boiler supplied with an open absorption system," Applied Energy, Elsevier, vol. 96(C), pages 444-450.
    4. Han, Xiaoqu & Liu, Ming & Wang, Jinshi & Yan, Junjie & Liu, Jiping & Xiao, Feng, 2014. "Simulation study on lignite-fired power system integrated with flue gas drying and waste heat recovery – Performances under variable power loads coupled with off-design parameters," Energy, Elsevier, vol. 76(C), pages 406-418.
    5. Roy, J.P. & Mishra, M.K. & Misra, Ashok, 2010. "Parametric optimization and performance analysis of a waste heat recovery system using Organic Rankine Cycle," Energy, Elsevier, vol. 35(12), pages 5049-5062.
    6. Łukowicz, Henryk & Kochaniewicz, Andrzej, 2012. "Analysis of the use of waste heat obtained from coal-fired units in Organic Rankine Cycles and for brown coal drying," Energy, Elsevier, vol. 45(1), pages 203-212.
    7. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    8. Pandiyarajan, V. & Chinna Pandian, M. & Malan, E. & Velraj, R. & Seeniraj, R.V., 2011. "Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system," Applied Energy, Elsevier, vol. 88(1), pages 77-87, January.
    9. Wang, Dexin & Bao, Ainan & Kunc, Walter & Liss, William, 2012. "Coal power plant flue gas waste heat and water recovery," Applied Energy, Elsevier, vol. 91(1), pages 341-348.
    10. Blarke, Morten B., 2012. "Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration," Applied Energy, Elsevier, vol. 91(1), pages 349-365.
    11. Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
    12. Zhang, Jianhua & Zhou, Yeli & Li, Ying & Hou, Guolian & Fang, Fang, 2013. "Generalized predictive control applied in waste heat recovery power plants," Applied Energy, Elsevier, vol. 102(C), pages 320-326.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiao, Pengcheng & Zhang, Yanping & Wang, Yuanjing & Wang, Jizhou, 2019. "Analysis of an improved economizer system for active control of the coal-fired boiler flue gas temperature," Energy, Elsevier, vol. 170(C), pages 185-198.
    2. Li, Yuzhong & Yan, Min & Zhang, Liqiang & Chen, Guifang & Cui, Lin & Song, Zhanlong & Chang, Jingcai & Ma, Chunyuan, 2016. "Method of flash evaporation and condensation – heat pump for deep cooling of coal-fired power plant flue gas: Latent heat and water recovery," Applied Energy, Elsevier, vol. 172(C), pages 107-117.
    3. Xu, Gang & Huang, Shengwei & Yang, Yongping & Wu, Ying & Zhang, Kai & Xu, Cheng, 2013. "Techno-economic analysis and optimization of the heat recovery of utility boiler flue gas," Applied Energy, Elsevier, vol. 112(C), pages 907-917.
    4. Jiayou Liu & Xiaoyun Gong & Wenhua Zhang & Fengzhong Sun & Qingbiao Wang, 2020. "Experimental Study on a Flue Gas Waste Heat Cascade Recovery System under Variable Working Conditions," Energies, MDPI, vol. 13(2), pages 1-19, January.
    5. Wang, Xiang & Zhuo, Jiankun & Liu, Jianmin & Li, Shuiqing, 2020. "Synergetic process of condensing heat exchanger and absorption heat pump for waste heat and water recovery from flue gas," Applied Energy, Elsevier, vol. 261(C).
    6. Ma, Youfu & Wang, Zirui & Lu, Junfu & Yang, Lijuan, 2018. "Techno-economic analysis of a novel hot air recirculation process for exhaust heat recovery from a 600 MW brown-coal-fired boiler," Energy, Elsevier, vol. 152(C), pages 348-357.
    7. Luo, Xianglong & Hu, Jiahao & Zhao, Jun & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2014. "Improved exergoeconomic analysis of a retrofitted natural gas-based cogeneration system," Energy, Elsevier, vol. 72(C), pages 459-475.
    8. Han, Xiaoqu & Liu, Ming & Zhai, Mengxu & Chong, Daotong & Yan, Junjie & Xiao, Feng, 2015. "Investigation on the off-design performances of flue gas pre-dried lignite-fired power system integrated with waste heat recovery at variable external working conditions," Energy, Elsevier, vol. 90(P2), pages 1743-1758.
    9. Li, Yong & Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Han, Wei, 2018. "Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater," Energy, Elsevier, vol. 149(C), pages 639-661.
    10. Yang, Mei & Liu, Chao, 2017. "The calculation of fluorine plastic economizer in economy by using the equivalent heat drop," Energy, Elsevier, vol. 135(C), pages 674-684.
    11. Jiayou Liu & Fengzhong Sun, 2019. "Experimental Study on Operation Regulation of a Coupled High–Low Energy Flue Gas Waste Heat Recovery System Based on Exhaust Gas Temperature Control," Energies, MDPI, vol. 12(4), pages 1-20, February.
    12. Wang, Yanhong & Cao, Lihua & Li, Xingcan & Wang, Jiaxing & Hu, Pengfei & Li, Bo & Li, Yong, 2020. "A novel thermodynamic method and insight of heat transfer characteristics on economizer for supercritical thermal power plant," Energy, Elsevier, vol. 191(C).
    13. Yan, Min & Zhang, Liang & Shi, Yuetao & Zhang, Liqiang & Li, Yuzhong & Ma, Chunyuan, 2018. "A novel boiler cold-end optimisation system based on bypass flue in coal-fired power plants: Heat recovery from wet flue gas," Energy, Elsevier, vol. 152(C), pages 84-94.
    14. Wang, Chaojun & He, Boshu & Yan, Linbo & Pei, Xiaohui & Chen, Shinan, 2014. "Thermodynamic analysis of a low-pressure economizer based waste heat recovery system for a coal-fired power plant," Energy, Elsevier, vol. 65(C), pages 80-90.
    15. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    16. Jiayou Liu & Fengzhong Sun, 2019. "Node Temperature of the Coupled High-Low Energy Grade Flus Gas Waste Heat Recovery System," Energies, MDPI, vol. 12(2), pages 1-16, January.
    17. Yufei Chai & Weiting Jiang & Xin Zheng, 2024. "Research on New Whitening and Water-Saving Technology Based on Industrial Equipment," Energies, MDPI, vol. 17(5), pages 1-14, February.
    18. Zhao, Yulong & Wang, Shixue & Ge, Minghui & Li, Yanzhe & Liang, Zhaojun & Yang, Yurong, 2018. "Performance analysis of a thermoelectric generator applied to wet flue gas waste heat recovery," Applied Energy, Elsevier, vol. 228(C), pages 2080-2089.
    19. Liu, Yinhe & Li, Qinlun & Duan, Xiaoli & Zhang, Yun & Yang, Zhen & Che, Defu, 2018. "Thermodynamic analysis of a modified system for a 1000 MW single reheat ultra-supercritical thermal power plant," Energy, Elsevier, vol. 145(C), pages 25-37.
    20. Ma, Youfu & Zhang, Hua & Yuan, Yichao & Wang, Zhiyun, 2015. "Optimization of a lignite-fired open pulverizing system boiler process based on variations in the drying agent composition," Energy, Elsevier, vol. 81(C), pages 304-316.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:188:y:2017:i:c:p:121-129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.