IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v228y2021ics0360544221008008.html
   My bibliography  Save this article

Performance assessments and simulations of ROT (radial outflow turbine) for back-pressure turbine generator system

Author

Listed:
  • Kim, Jungwan
  • Ha, Yunseok
  • Zahorulko, Andriy
  • Lee, Yongbok

Abstract

The high pressure steam is regulated by the Pressure-Reducing Valves (PRVs) to suit the various industrial process; however, this, inevitably leads to economic and energy losses. In this study, PRV is replaced by a back-pressure turbine generator comprising a Radial Outflow Turbine (ROT). The structural characteristics of the ROT, such as the easy adjustment of the tip clearance, make it possible to control the steam properties. The steam with selectively reduced pressure (and temperature) can be provided to users. The blade geometry of the ROT is designed using a commercial software. The numerical prediction of the fluid properties is carried out using a real fluid model in ANSYS-CFX. The simulation results are compared with the experimental results obtained under the same off-design conditions. The tip clearance (100, 300 and 500μm) are applied as a parameter to investigate the change of performance and to adjust the properties of the discharged steam. The experimental results show that the maximum electrical power produced at the minimum tip clearance is 12.8 kW, and the temperature and pressure differences tend to decrease with increasing tip clearance. These results demonstrate the potential of the ROT as a PRV and energy recovery device in back-pressure turbines.

Suggested Citation

  • Kim, Jungwan & Ha, Yunseok & Zahorulko, Andriy & Lee, Yongbok, 2021. "Performance assessments and simulations of ROT (radial outflow turbine) for back-pressure turbine generator system," Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008008
    DOI: 10.1016/j.energy.2021.120551
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221008008
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120551?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Yafen & Xing, Ziwen & He, Zhilong & Wu, Huagen, 2017. "Modeling and performance analysis of twin-screw steam expander under fluctuating operating conditions in steam pipeline pressure energy recovery applications," Energy, Elsevier, vol. 141(C), pages 692-701.
    2. Rezaeiha, Abdolrahim & Montazeri, Hamid & Blocken, Bert, 2019. "On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines," Energy, Elsevier, vol. 180(C), pages 838-857.
    3. Cho, Soo-Yong & Cho, Chong-Hyun & Choi, Sang-Kyu, 2015. "Experiment and cycle analysis on a partially admitted axial-type turbine used in the organic Rankine cycle," Energy, Elsevier, vol. 90(P1), pages 643-651.
    4. Alshammari, Fuhaid & Pesyridis, Apostolos & Karvountzis-Kontakiotis, Apostolos & Franchetti, Ben & Pesmazoglou, Yagos, 2018. "Experimental study of a small scale organic Rankine cycle waste heat recovery system for a heavy duty diesel engine with focus on the radial inflow turbine expander performance," Applied Energy, Elsevier, vol. 215(C), pages 543-555.
    5. Kang, Seok Hun, 2012. "Design and experimental study of ORC (organic Rankine cycle) and radial turbine using R245fa working fluid," Energy, Elsevier, vol. 41(1), pages 514-524.
    6. Aleš Hromádka & Martin Sirový & Zbyněk Martínek, 2019. "Innovation in an Existing Backpressure Turbine for Ensure Better Sustainability and Flexible Operation," Energies, MDPI, vol. 12(14), pages 1-20, July.
    7. Frate, Guido Francesco & Ferrari, Lorenzo & Lensi, Roberto & Desideri, Umberto, 2019. "Steam expander as a throttling valve replacement in industrial plants: A techno-economic feasibility analysis," Applied Energy, Elsevier, vol. 238(C), pages 11-21.
    8. Qian, Jin-yuan & Wei, Lin & Zhang, Ming & Chen, Fu-qiang & Chen, Li-long & Jiang, Wei-kang & Jin, Zhi-jiang, 2017. "Flow rate analysis of compressible superheated steam through pressure reducing valves," Energy, Elsevier, vol. 135(C), pages 650-658.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Wei & Qiao, Han & Lei, Biao & Wu, Yu-ting & Ma, Chong-fang, 2021. "Experimental study on the influence of inlet and exhaust pressure loss on the performance of single screw expanders," Energy, Elsevier, vol. 232(C).
    2. Li, Jing & Gao, Guangtao & Li, Pengcheng & Pei, Gang & Huang, Hulin & Su, Yuehong & Ji, Jie, 2018. "Experimental study of organic Rankine cycle in the presence of non-condensable gases," Energy, Elsevier, vol. 142(C), pages 739-753.
    3. Fuhaid Alshammari & Apostolos Pesyridis & Mohamed Elashmawy, 2020. "Generation of 3D Turbine Blades for Automotive Organic Rankine Cycles: Mathematical and Computational Perspectives," Mathematics, MDPI, vol. 9(1), pages 1-30, December.
    4. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    5. Landelle, Arnaud & Tauveron, Nicolas & Haberschill, Philippe & Revellin, Rémi & Colasson, Stéphane, 2017. "Organic Rankine cycle design and performance comparison based on experimental database," Applied Energy, Elsevier, vol. 204(C), pages 1172-1187.
    6. Zou, Aihong & Chassaing, Jean-Camille & Persky, Rodney & Gu, YuanTong & Sauret, Emilie, 2019. "Uncertainty Quantification in high-density fluid radial-inflow turbines for renewable low-grade temperature cycles," Applied Energy, Elsevier, vol. 241(C), pages 313-330.
    7. Zhilong He & Tao Wang & Xiaolin Wang & Xueyuan Peng & Ziwen Xing, 2018. "Experimental Investigation into the Effect of Oil Injection on the Performance of a Variable Speed Twin-Screw Compressor," Energies, MDPI, vol. 11(6), pages 1-14, May.
    8. Bamorovat Abadi, Gholamreza & Kim, Kyung Chun, 2017. "Investigation of organic Rankine cycles with zeotropic mixtures as a working fluid: Advantages and issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1000-1013.
    9. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    10. Hassan, Syed Saddam ul & Javaid, M. Tariq & Rauf, Umar & Nasir, Sheharyar & Shahzad, Aamer & Salamat, Shuaib, 2023. "Systematic investigation of power enhancement of Vertical Axis Wind Turbines using bio-inspired leading edge tubercles," Energy, Elsevier, vol. 270(C).
    11. Subiantoro, Alison & Ooi, Kim Tiow, 2014. "Comparison and performance analysis of the novel revolving vane expander design variants in low and medium pressure applications," Energy, Elsevier, vol. 78(C), pages 747-757.
    12. Yamada, Noboru & Tominaga, Yoshihito & Yoshida, Takanori, 2014. "Demonstration of 10-Wp micro organic Rankine cycle generator for low-grade heat recovery," Energy, Elsevier, vol. 78(C), pages 806-813.
    13. Kai Yang & Hongguang Zhang & Songsong Song & Jian Zhang & Yuting Wu & Yeqiang Zhang & Hongjin Wang & Ying Chang & Chen Bei, 2014. "Performance Analysis of the Vehicle Diesel Engine-ORC Combined System Based on a Screw Expander," Energies, MDPI, vol. 7(5), pages 1-20, May.
    14. Jung-Bo Sim & Se-Jin Yook & Young Won Kim, 2022. "Performance Analysis of Organic Rankine Cycle with the Turbine Embedded in a Generator (TEG)," Energies, MDPI, vol. 15(1), pages 1-18, January.
    15. N. Aravindhan & M. P. Natarajan & S. Ponnuvel & P.K. Devan, 2023. "Recent developments and issues of small-scale wind turbines in urban residential buildings- A review," Energy & Environment, , vol. 34(4), pages 1142-1169, June.
    16. Li, Guoqiang & Lei, Biao & Wu, Yuting & Zhi, Ruiping & Zhao, Yingkun & Guo, Zhiyu & Liu, Guangyu & Ma, Chongfang, 2018. "Influence of inlet pressure and rotational speed on the performance of high pressure single screw expander prototype," Energy, Elsevier, vol. 147(C), pages 279-285.
    17. Dong, Hye-Won & Jeong, Jae-Weon, 2020. "Energy benefits of organic Rankine cycle in a liquid desiccant and evaporative cooling-assisted air conditioning system," Renewable Energy, Elsevier, vol. 147(P1), pages 2358-2373.
    18. Lisheng Pan & Huaixin Wang, 2019. "Experimental Investigation on Performance of an Organic Rankine Cycle System Integrated with a Radial Flow Turbine," Energies, MDPI, vol. 12(4), pages 1-20, February.
    19. Jiménez-Arreola, Manuel & Wieland, Christoph & Romagnoli, Alessandro, 2019. "Direct vs indirect evaporation in Organic Rankine Cycle (ORC) systems: A comparison of the dynamic behavior for waste heat recovery of engine exhaust," Applied Energy, Elsevier, vol. 242(C), pages 439-452.
    20. Jovana Radulovic, 2023. "Organic Rankine Cycle: Effective Applications and Technological Advances," Energies, MDPI, vol. 16(5), pages 1-3, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:228:y:2021:i:c:s0360544221008008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.