IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v227y2021ics0360544221007751.html
   My bibliography  Save this article

Impact of biodiesel and diesel blends on the fuel filter: A combined experimental and simulation study

Author

Listed:
  • Thangamani, Saravanakumar
  • Sundaresan, Sathya Narayanan
  • Kannappan S., Subbu
  • Barawkar, Viraj Tatyasaheb
  • Jeyaseelan, Thangaraja

Abstract

Automotive engines are encouraged to utilize biofuels to lower the net CO2 and to enhance the usage of renewable energy. With well-proven biodiesel engine characteristics, a comprehensive study about the impact of biodiesel on the fuel filter is lacking in the literature. Hence the current study investigates the comparative impact of higher blends of biodiesel and diesel on the fuel filter. Here, the authors have conducted both experimental and simulation studies on the fuel filter with diesel, two biodiesel fuels namely karanja, and waste cooking oil. Filter blocking tendency (FBT) was measured for the test fuels following ASTM D2068. Also, a comparative tensile strength analysis of an automotive filter media was examined. The test results reveal that FBT increases exponentially with an increase in biodiesel blend concentration with a maximum FBT value of 30 for karanja biodiesel. Further, the tensile strength of the filter media reduces significantly with soaking in biodiesel compared to fossil diesel. Filter pressure drop measurement results with biodiesel were observed to be 35% higher than diesel. Consequently, effective countermeasures such as fuel preheating, varying the filtration area and ethanol blending are proposed to reduce the filter pressure drop with biodiesel. Filter pressure drop with karanja can be reduced similar to diesel fuel by increasing the fuel temperature by 16 °C or enhancing the filtration area by 35%. Karanja blended with 20% ethanol was also observed to have lowered the pressure drop. The present study concludes that neat biodiesel operation affects the filtration process and the filter media of the conventional fuel filter significantly.

Suggested Citation

  • Thangamani, Saravanakumar & Sundaresan, Sathya Narayanan & Kannappan S., Subbu & Barawkar, Viraj Tatyasaheb & Jeyaseelan, Thangaraja, 2021. "Impact of biodiesel and diesel blends on the fuel filter: A combined experimental and simulation study," Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007751
    DOI: 10.1016/j.energy.2021.120526
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221007751
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.120526?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cardeño, Fernando & Lapuerta, Magín & Rios, Luis & Agudelo, John R., 2020. "Reconsideration of regulated contamination limits to improve filterability of biodiesel and blends with diesel fuels," Renewable Energy, Elsevier, vol. 159(C), pages 1243-1251.
    2. Shahir, S.A. & Masjuki, H.H. & Kalam, M.A. & Imran, A. & Fattah, I.M. Rizwanul & Sanjid, A., 2014. "Feasibility of diesel–biodiesel–ethanol/bioethanol blend as existing CI engine fuel: An assessment of properties, material compatibility, safety and combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 379-395.
    3. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    4. Alptekin, Ertan & Canakci, Mustafa, 2008. "Determination of the density and the viscosities of biodiesel–diesel fuel blends," Renewable Energy, Elsevier, vol. 33(12), pages 2623-2630.
    5. Carneiro, Maria Luisa N.M. & Pradelle, Florian & Braga, Sergio L. & Gomes, Marcos Sebastião P. & Martins, Ana Rosa F.A. & Turkovics, Franck & Pradelle, Renata N.C., 2017. "Potential of biofuels from algae: Comparison with fossil fuels, ethanol and biodiesel in Europe and Brazil through life cycle assessment (LCA)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 632-653.
    6. Mishra, Shashank & Anand, K. & Santhosh, S. & Mehta, Pramod S., 2017. "Comparison of biodiesel fuel behavior in a heavy duty turbocharged and a light duty naturally aspirated engine," Applied Energy, Elsevier, vol. 202(C), pages 459-470.
    7. Thangaraja, J. & Anand, K. & Mehta, Pramod S., 2016. "Biodiesel NOx penalty and control measures - a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 1-24.
    8. Tesfa, B. & Mishra, R. & Gu, F. & Powles, N., 2010. "Prediction models for density and viscosity of biodiesel and their effects on fuel supply system in CI engines," Renewable Energy, Elsevier, vol. 35(12), pages 2752-2760.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohadesi, Majid & Aghel, Babak & Gouran, Ashkan & Razmehgir, Mohammad Hamed, 2022. "Transesterification of waste cooking oil using Clay/CaO as a solid base catalyst," Energy, Elsevier, vol. 242(C).
    2. Xu, Bowen & Sun, Bin & Cui, Lulu & Chen, Jiahao & Chen, Xiaomin & Li, Xinyue & Wang, Zhongcheng & Han, Sheng & Xue, Yuan, 2023. "Evaluation of the star anise extract as a natural cold flow improver for enhancing the cold flow properties of diesel fuel," Renewable Energy, Elsevier, vol. 215(C).
    3. Jeyaseelan, Thangaraja & Ekambaram, Porpatham & Subramanian, Jayagopal & Shamim, Tariq, 2022. "A comprehensive review on the current trends, challenges and future prospects for sustainable mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Mohan, Revu Krishna & Sarojini, Jajimoggala & Ağbulut, Ümit & Rajak, Upendra & Verma, Tikendra Nath & Reddy, K. Thirupathi, 2023. "Energy recovery from waste plastic oils as an alternative fuel source and comparative assessment of engine characteristics at varying fuel injection timings," Energy, Elsevier, vol. 275(C).
    5. Hu, Zhiyuan & Wang, Zizhou & Luo, Jun & Fu, Jiale & Tan, Piqiang & Lou, Diming, 2023. "Effect of transport distance on the size distribution, graphitized structure, surface functional groups and oxidation activity of PM from diesel engine: A comparison of waste cooking oil biodiesel and," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Doppalapudi, A.T. & Azad, A.K. & Khan, M.M.K., 2023. "Advanced strategies to reduce harmful nitrogen-oxide emissions from biodiesel fueled engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    2. Suiuay, Chokchai & Laloon, Kittipong & Katekaew, Somporn & Senawong, Kritsadang & Noisuwan, Phakamat & Sudajan, Somposh, 2020. "Effect of gasoline-like fuel obtained from hard-resin of Yang (Dipterocarpus alatus) on single cylinder gasoline engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 153(C), pages 634-645.
    3. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    4. Renas Hasan Saeed Saeed & Youssef Kassem & Hüseyin Çamur, 2019. "Effect of Biodiesel Mixture Derived from Waste Frying-Corn, Frying-Canola-Corn and Canola-Corn Cooking Oils with Various ‎Ages on Physicochemical Properties," Energies, MDPI, vol. 12(19), pages 1-26, September.
    5. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    7. Arbab, M.I. & Masjuki, H.H. & Varman, M. & Kalam, M.A. & Imtenan, S. & Sajjad, H., 2013. "Fuel properties, engine performance and emission characteristic of common biodiesels as a renewable and sustainable source of fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 133-147.
    8. Ebna Alam Fahd, M. & Lee, Poh-Seng & Chou, Siaw Kiang & Wenming, Yang & Yap, Christopher, 2014. "Experimental study and empirical correlation development of fuel properties of waste cooking palm biodiesel and its diesel blends at elevated temperatures," Renewable Energy, Elsevier, vol. 68(C), pages 282-288.
    9. Nawar Al-Esawi & Mansour Al Qubeissi & Ruslana Kolodnytska, 2019. "The Impact of Biodiesel Fuel on Ethanol/Diesel Blends," Energies, MDPI, vol. 12(9), pages 1-11, May.
    10. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    11. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    12. Nita, I. & Geacai, S. & Iulian, O., 2011. "Measurements and correlations of physico-chemical properties to composition of pseudo-binary mixtures with biodiesel," Renewable Energy, Elsevier, vol. 36(12), pages 3417-3423.
    13. Pradelle, Florian & Leal Braga, Sergio & Fonseca de Aguiar Martins, Ana Rosa & Turkovics, Franck & Nohra Chaar Pradelle, Renata, 2019. "Performance and combustion characteristics of a compression ignition engine running on diesel-biodiesel-ethanol (DBE) blends – Potential as diesel fuel substitute on an Euro III engine," Renewable Energy, Elsevier, vol. 136(C), pages 586-598.
    14. Suiuay, Chokchai & Katekaew, Somporn & Senawong, Kritsadang & Junsiri, Chaiyan & Srichat, Aphichat & Laloon, Kittipong, 2023. "Production of gasoline and diesel-like fuel from natural rubber scrap: Upgrading of the liquid fuel properties and performance in a spark ignition engine," Energy, Elsevier, vol. 283(C).
    15. Anis, Samsudin & Budiandono, Galuh Nur, 2019. "Investigation of the effects of preheating temperature of biodiesel-diesel fuel blends on spray characteristics and injection pump performances," Renewable Energy, Elsevier, vol. 140(C), pages 274-280.
    16. Belachew Cekene Tesfa & Rakesh Mishra & Aliyu M. Aliyu, 2021. "Effect of Biodiesel Blends on the Transient Performance of Compression Ignition Engines," Energies, MDPI, vol. 14(17), pages 1-21, August.
    17. Rajaeifar, Mohammad Ali & Abdi, Reza & Tabatabaei, Meisam, 2017. "Expanded polystyrene waste application for improving biodiesel environmental performance parameters from life cycle assessment point of view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 278-298.
    18. Kodate, Shankar Vitthal & Satyanarayana Raju, Pragada & Yadav, Ajay Kumar & Kumar, G.N., 2021. "Investigation of preheated Dhupa seed oil biodiesel as an alternative fuel on the performance, emission and combustion in a CI engine," Energy, Elsevier, vol. 231(C).
    19. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    20. Girardi, Julio Cezar & Bariccatti, Reinaldo Aparecido & Savada, Felipe Yassuo & Borsato, Dionísio & Melegari de Souza, Samuel Nelson & Amaral, Camila Zeni & Prior, Maritane, 2020. "Response surface methodology for the optimization of oxidative stability through the use of natural additives," Renewable Energy, Elsevier, vol. 159(C), pages 346-355.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:227:y:2021:i:c:s0360544221007751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.