A novel method for intelligent heating: On-demand optimized regulation of hydraulic balance for secondary networks
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128900
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wack, Yannick & Baelmans, Martine & Salenbien, Robbe & Blommaert, Maarten, 2023. "Economic topology optimization of District Heating Networks using a pipe penalization approach," Energy, Elsevier, vol. 264(C).
- Zheng, Xuejing & Shi, Zhiyuan & Wang, Yaran & Zhang, Huan & Liu, Huzhen, 2023. "Thermo-hydraulic condition optimization of large-scale complex district heating network: A case study of Tianjin," Energy, Elsevier, vol. 266(C).
- Tunzi, Michele & Benakopoulos, Theofanis & Yang, Qinjiang & Svendsen, Svend, 2023. "Demand side digitalisation: A methodology using heat cost allocators and energy meters to secure low-temperature operations in existing buildings connected to district heating networks," Energy, Elsevier, vol. 264(C).
- Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
- Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
- Gong, Mei & Werner, Sven, 2015. "An assessment of district heating research in China," Renewable Energy, Elsevier, vol. 84(C), pages 97-105.
- Hast, Aira & Syri, Sanna & Lekavičius, Vidas & Galinis, Arvydas, 2018. "District heating in cities as a part of low-carbon energy system," Energy, Elsevier, vol. 152(C), pages 627-639.
- Ashfaq, Asad & Ianakiev, Anton, 2018. "Investigation of hydraulic imbalance for converting existing boiler based buildings to low temperature district heating," Energy, Elsevier, vol. 160(C), pages 200-212.
- Frayssinet, Loïc & Merlier, Lucie & Kuznik, Frédéric & Hubert, Jean-Luc & Milliez, Maya & Roux, Jean-Jacques, 2018. "Modeling the heating and cooling energy demand of urban buildings at city scale," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2318-2327.
- Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
- Wang, Yaran & You, Shijun & Zhang, Huan & Zheng, Wandong & Zheng, Xuejing & Miao, Qingwei, 2017. "Hydraulic performance optimization of meshed district heating network with multiple heat sources," Energy, Elsevier, vol. 126(C), pages 603-621.
- Chicherin, Stanislav & Zhuikov, Andrey & Junussova, Lyazzat, 2022. "The new method for hydraulic calculations of a district heating (DH) network," Energy, Elsevier, vol. 260(C).
- Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
- Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Zhikai & Zhang, Huan & Wang, Yaran & Fan, Xianwang & You, Shijun & Jiang, Yan & Gao, Xinlei, 2023. "Optimization of hydraulic distribution using loop adjustment method in meshed district heating system with multiple heat sources," Energy, Elsevier, vol. 284(C).
- Wang, Yang & Zhang, Shanhong & Chow, David & Kuckelkorn, Jens M., 2021. "Evaluation and optimization of district energy network performance: Present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
- Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Zhang, Zuoyi & Dong, Yujie & Huang, Xiaojin, 2024. "Passivity-based control of fluid flow networks with capacitance," Energy, Elsevier, vol. 299(C).
- Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
- Heng Chen & Zhen Qi & Qiao Chen & Yunyun Wu & Gang Xu & Yongping Yang, 2018. "Modified High Back-Pressure Heating System Integrated with Raw Coal Pre-Drying in Combined Heat and Power Unit," Energies, MDPI, vol. 11(9), pages 1-16, September.
- Liu, Zhikai & Zhang, Huan & Wang, Yaran & You, Shijun & Dai, Ting & Jiang, Yan, 2024. "Evaluation of the controllability of multi-family building with radiator heating systems: A frequency domain approach," Energy, Elsevier, vol. 294(C).
- Zhang, Yichi & Xia, Jianjun & Fang, Hao & Zuo, Hetao & Jiang, Yi, 2019. "Roadmap towards clean heating in 2035: Case study of inner Mongolia, China," Energy, Elsevier, vol. 189(C).
- Ma, Sining & Guo, Siyue & Zheng, Dingqian & Chang, Shiyan & Zhang, Xiliang, 2021. "Roadmap towards clean and low carbon heating to 2035: A provincial analysis in northern China," Energy, Elsevier, vol. 225(C).
- Tian, Xingtao & Lin, Xiaojie & Zhong, Wei & Zhou, Yi & Cong, Feiyun, 2024. "Optimal dispatch of integrated electricity and heating systems considering the quality-quantity regulation of heating systems to promote renewable energy consumption," Energy, Elsevier, vol. 300(C).
- Wang, Hai & Wang, Haiying & Haijian, Zhou & Zhu, Tong, 2017. "Optimization modeling for smart operation of multi-source district heating with distributed variable-speed pumps," Energy, Elsevier, vol. 138(C), pages 1247-1262.
- Wang, Yaran & Shi, Kaiyu & Zheng, Xuejing & You, Shijun & Zhang, Huan & Zhu, Chengzhi & Li, Liang & Wei, Shen & Ding, Chao & Wang, Na, 2020. "Thermo-hydraulic coupled analysis of meshed district heating networks based on improved breadth first search method," Energy, Elsevier, vol. 205(C).
- Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
- Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
- Liu, Zhikai & Zhang, Huan & Wang, Yaran & Jiang, Yan & He, Zhihao & Zhou, Pengkun, 2023. "An adaptive double-Newton-iteration hydraulic calculation method for optimal operation of the meshed district heating network," Energy, Elsevier, vol. 272(C).
- Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
- Li, Muyuan & Yao, Jinfeng & Shen, Yanbo & Yuan, Bin & Simmonds, Ian & Liu, Yunyun, 2023. "Impact of synoptic circulation patterns on renewable energy-related variables over China," Renewable Energy, Elsevier, vol. 215(C).
- Wang, Manyu & Wei, Chu, 2024. "Toward sustainable heating: Assessment of the carbon mitigation potential from residential heating in northern rural China," Energy Policy, Elsevier, vol. 190(C).
- Jing, Mengke & Zhang, Shujie & Fu, Lisong & Cao, Guoquan & Wang, Rui, 2023. "Reducing heat losses from aging district heating pipes by using cured-in-place pipe liners," Energy, Elsevier, vol. 273(C).
- Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
- Ram, Manish & Gulagi, Ashish & Aghahosseini, Arman & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Energy transition in megacities towards 100% renewable energy: A case for Delhi," Renewable Energy, Elsevier, vol. 195(C), pages 578-589.
More about this item
Keywords
On-demand heating; Hydraulic balance; Hydraulic optimization; Secondary heating network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223022946. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.