IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v248y2022ics0360544222005382.html
   My bibliography  Save this article

Fabrication and energy efficiency of translucent concrete panel for building envelope

Author

Listed:
  • Huang, Baofeng
  • Wang, Yeqing
  • Lu, Wensheng
  • Cheng, Meng

Abstract

A translucent concrete panel (TCP) is a novel construction material for building envelopes. It combines light conduits, such as optical fibers (OFs), and lightweight, high-strength concrete, enabling it to transmit light and carry the external load. A set of TCPs was cast using OFs with a large diameter (17.8 mm). The compressive strength was 39.6 N/mm2, which is qualified to carry the external load as the structural components. The thermal conductivity of the TCP was 0.2114 W/(m·K), indicating excellent thermal insulation performance compared to traditional building envelopes, such as glass curtain walls (GCW) and masonry facades. To investigate the energy consumption of a TCP, a one-roomed office building was modeled numerically. Three cities were selected to analyze the monetary cost and energy consumption of various building envelopes. These building envelopes were made of a masonry wall, GCW, and TCP. The simulation results revealed that the model with a TCP envelope had the lowest electricity consumption, monetary cost, and payback period. Moreover, it was more energy efficient in Stockholm and Nanjing than in Singapore. The novel TCP is applicable in building envelopes and other areas where light transmission and load-bearing are required.

Suggested Citation

  • Huang, Baofeng & Wang, Yeqing & Lu, Wensheng & Cheng, Meng, 2022. "Fabrication and energy efficiency of translucent concrete panel for building envelope," Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005382
    DOI: 10.1016/j.energy.2022.123635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222005382
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bratislav Svetozarevic & Moritz Begle & Prageeth Jayathissa & Stefan Caranovic & Robert F. Shepherd & Zoltan Nagy & Illias Hischier & Johannes Hofer & Arno Schlueter, 2019. "Publisher Correction: Dynamic photovoltaic building envelopes for adaptive energy and comfort management," Nature Energy, Nature, vol. 4(8), pages 719-719, August.
    2. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    3. Lam, Joseph C., 1995. "Building envelope loads and commercial sector electricity use in Hong Kong," Energy, Elsevier, vol. 20(3), pages 189-194.
    4. Thalfeldt, Martin & Pikas, Ergo & Kurnitski, Jarek & Voll, Hendrik, 2017. "Window model and 5 year price data sensitivity to cost-effective façade solutions for office buildings in Estonia," Energy, Elsevier, vol. 135(C), pages 685-697.
    5. Li, Zhenpeng & Ma, Tao & Zhao, Jiaxin & Song, Aotian & Cheng, Yuanda, 2019. "Experimental study and performance analysis on solar photovoltaic panel integrated with phase change material," Energy, Elsevier, vol. 178(C), pages 471-486.
    6. Djamila, Harimi, 2017. "Indoor thermal comfort predictions: Selected issues and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 569-580.
    7. Zhou, Juan & Chen, Youming, 2010. "A review on applying ventilated double-skin facade to buildings in hot-summer and cold-winter zone in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1321-1328, May.
    8. Vanaga, Ruta & Blumberga, Andra & Freimanis, Ritvars & Mols, Toms & Blumberga, Dagnija, 2018. "Solar facade module for nearly zero energy building," Energy, Elsevier, vol. 157(C), pages 1025-1034.
    9. Huang, Yu & Niu, Jian-lei, 2015. "Application of super-insulating translucent silica aerogel glazing system on commercial building envelope of humid subtropical climates – Impact on space cooling load," Energy, Elsevier, vol. 83(C), pages 316-325.
    10. Saafi, Khawla & Daouas, Naouel, 2019. "Energy and cost efficiency of phase change materials integrated in building envelopes under Tunisia Mediterranean climate," Energy, Elsevier, vol. 187(C).
    11. Ang, B.W. & Wang, H. & Ma, Xiaojing, 2017. "Climatic influence on electricity consumption: The case of Singapore and Hong Kong," Energy, Elsevier, vol. 127(C), pages 534-543.
    12. Shameri, M.A. & Alghoul, M.A. & Sopian, K. & Zain, M. Fauzi M. & Elayeb, Omkalthum, 2011. "Perspectives of double skin façade systems in buildings and energy saving," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1468-1475, April.
    13. Korres, D.N. & Tzivanidis, C., 2019. "Numerical investigation and optimization of an experimentally analyzed solar CPC," Energy, Elsevier, vol. 172(C), pages 57-67.
    14. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    15. Huang, Junchao & Chen, Xi & Yang, Hongxing & Zhang, Weilong, 2018. "Numerical investigation of a novel vacuum photovoltaic curtain wall and integrated optimization of photovoltaic envelope systems," Applied Energy, Elsevier, vol. 229(C), pages 1048-1060.
    16. De Herde, A. & Nihoul, A., 1994. "Overheating and daylighting in commercial buildings," Renewable Energy, Elsevier, vol. 5(5), pages 917-919.
    17. Yan, Tian & Sun, Zhongwei & Gao, Jiajia & Xu, Xinhua & Yu, Jinghua & Gang, Wenjie, 2020. "Simulation study of a pipe-encapsulated PCM wall system with self-activated heat removal by nocturnal sky radiation," Renewable Energy, Elsevier, vol. 146(C), pages 1451-1464.
    18. Wu, Jing & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Wu, Zhenghong & Wang, Pengcheng, 2020. "Experimental and theoretical study on the performance of semi-transparent photovoltaic glazing façade under shaded conditions," Energy, Elsevier, vol. 207(C).
    19. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    20. Ascione, Fabrizio & Bianco, Nicola & Maria Mauro, Gerardo & Napolitano, Davide Ferdinando, 2019. "Building envelope design: Multi-objective optimization to minimize energy consumption, global cost and thermal discomfort. Application to different Italian climatic zones," Energy, Elsevier, vol. 174(C), pages 359-374.
    21. Tettey, Uniben Yao Ayikoe & Dodoo, Ambrose & Gustavsson, Leif, 2016. "Primary energy implications of different design strategies for an apartment building," Energy, Elsevier, vol. 104(C), pages 132-148.
    22. Su, Xiaosong & Zhang, Ling & Liu, Zhongbing & Luo, Yongqiang & Lian, Jinbu & Liang, Ping, 2020. "Daylighting performance simulation and analysis of translucent concrete building envelopes," Renewable Energy, Elsevier, vol. 154(C), pages 754-766.
    23. Liu, Yan & Wang, Mengyuan & Cui, Hongzhi & Yang, Liu & Liu, Jiaping, 2020. "Micro-/macro-level optimization of phase change material panel in building envelope," Energy, Elsevier, vol. 195(C).
    24. Gholami, Hassan & Røstvik, Harald Nils, 2020. "Economic analysis of BIPV systems as a building envelope material for building skins in Europe," Energy, Elsevier, vol. 204(C).
    25. Pilechiha, Peiman & Mahdavinejad, Mohammadjavad & Pour Rahimian, Farzad & Carnemolla, Phillippa & Seyedzadeh, Saleh, 2020. "Multi-objective optimisation framework for designing office windows: quality of view, daylight and energy efficiency," Applied Energy, Elsevier, vol. 261(C).
    26. Deng, Cheng-gang & Chen, Fei, 2021. "Model verification and photo-thermal conversion assessment of a novel facade embedded compound parabolic concentrator," Energy, Elsevier, vol. 220(C).
    27. Bratislav Svetozarevic & Moritz Begle & Prageeth Jayathissa & Stefan Caranovic & Robert F. Shepherd & Zoltan Nagy & Illias Hischier & Johannes Hofer & Arno Schlueter, 2019. "Dynamic photovoltaic building envelopes for adaptive energy and comfort management," Nature Energy, Nature, vol. 4(8), pages 671-682, August.
    28. Lee, M.C. & Kuo, C.H. & Wang, F.J., 2016. "Utilizing the building envelope for power generation and conservation," Energy, Elsevier, vol. 97(C), pages 1-10.
    29. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    30. Peci López, F. & Ruiz de Adana Santiago, M., 2015. "Sensitivity study of an opaque ventilated façade in the winter season in different climate zones in Spain," Renewable Energy, Elsevier, vol. 75(C), pages 524-533.
    31. Han, Yongming & Fan, Chenyu & Geng, Zhiqiang & Ma, Bo & Cong, Di & Chen, Kai & Yu, Bin, 2020. "Energy efficient building envelope using novel RBF neural network integrated affinity propagation," Energy, Elsevier, vol. 209(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rashad, Magdi & Żabnieńska-Góra, Alina & Norman, Les & Jouhara, Hussam, 2022. "Analysis of energy demand in a residential building using TRNSYS," Energy, Elsevier, vol. 254(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    2. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    3. Huang, Xinyu & Li, Fangfei & Liu, Zhengguang & Gao, Xinyu & Yang, Xiaohu & Yan, Jinyue, 2023. "Design and optimization of a novel phase change photovoltaic thermal utilization structure for building envelope," Renewable Energy, Elsevier, vol. 218(C).
    4. Sohani, Ali & Sayyaadi, Hoseyn & Miremadi, Seyed Rahman & Yang, Xiaohu & Doranehgard, Mohammad Hossein & Nizetic, Sandro, 2023. "Determination of the best air space value for installation of a PV façade technology based on 4E characteristics," Energy, Elsevier, vol. 262(PB).
    5. Barbosa, Sabrina & Ip, Kenneth, 2014. "Perspectives of double skin façades for naturally ventilated buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1019-1029.
    6. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    7. Gigih Rahmandhani Setyantho & Hansaem Park & Seongju Chang, 2021. "Multi-Criteria Performance Assessment for Semi-Transparent Photovoltaic Windows in Different Climate Contexts," Sustainability, MDPI, vol. 13(4), pages 1-21, February.
    8. Ma, Tao & Li, Meng & Kazemian, Arash, 2020. "Photovoltaic thermal module and solar thermal collector connected in series to produce electricity and high-grade heat simultaneously," Applied Energy, Elsevier, vol. 261(C).
    9. Li, Yanxue & Wang, Zixuan & Xu, Wenya & Gao, Weijun & Xu, Yang & Xiao, Fu, 2023. "Modeling and energy dynamic control for a ZEH via hybrid model-based deep reinforcement learning," Energy, Elsevier, vol. 277(C).
    10. De Gracia, Alvaro & Castell, Albert & Navarro, Lidia & Oró, Eduard & Cabeza, Luisa F., 2013. "Numerical modelling of ventilated facades: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 539-549.
    11. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    12. Halawa, Edward & Ghaffarianhoseini, Amirhosein & Ghaffarianhoseini, Ali & Trombley, Jeremy & Hassan, Norhaslina & Baig, Mirza & Yusoff, Safiah Yusmah & Azzam Ismail, Muhammad, 2018. "A review on energy conscious designs of building façades in hot and humid climates: Lessons for (and from) Kuala Lumpur and Darwin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2147-2161.
    13. Ghaffarianhoseini, Ali & Ghaffarianhoseini, Amirhosein & Berardi, Umberto & Tookey, John & Li, Danny Hin Wa & Kariminia, Shahab, 2016. "Exploring the advantages and challenges of double-skin façades (DSFs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1052-1065.
    14. Nasrollahi, Nazanin & Salehi, Majid, 2015. "Performance enhancement of double skin facades in hot and dry climates using wind parameters," Renewable Energy, Elsevier, vol. 83(C), pages 1-12.
    15. Sarrafha, Hamid & Kasaeian, Alibakhsh & Jahangir, Mohammad Hossein & Taylor, Robert A., 2021. "Transient thermal response of multi-walled carbon nanotube phase change materials in building walls," Energy, Elsevier, vol. 224(C).
    16. Qiu, Changyu & Yang, Hongxing, 2022. "Dynamic coupling of a heat transfer model and whole building simulation for a novel cadmium telluride-based vacuum photovoltaic glazing," Energy, Elsevier, vol. 250(C).
    17. Diallo, Thierno M.O. & Zhao, Xudong & Dugue, Antoine & Bonnamy, Paul & Javier Miguel, Francisco & Martinez, Asier & Theodosiou, Theodoros & Liu, Jing-Sheng & Brown, Nathan, 2017. "Numerical investigation of the energy performance of an Opaque Ventilated Façade system employing a smart modular heat recovery unit and a latent heat thermal energy system," Applied Energy, Elsevier, vol. 205(C), pages 130-152.
    18. Wu, Jing & Zhang, Ling & Liu, Zhongbing & Wu, Zhenghong, 2021. "Coupled optical-electrical-thermal analysis of a semi-transparent photovoltaic glazing façade under building shadow," Applied Energy, Elsevier, vol. 292(C).
    19. Arias-Rosales, Andrés & LeDuc, Philip R., 2022. "Shadow modeling in urban environments for solar harvesting devices with freely defined positions and orientations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Gencel, Osman & Subasi, Serkan & Ustaoglu, Abid & Sarı, Ahmet & Marasli, Muhammed & Hekimoğlu, Gökhan & Kam, Erol, 2022. "Development, characterization and thermo-regulative performance of microencapsulated phase change material included-glass fiber reinforced foam concrete as novel thermal energy effective-building mate," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:248:y:2022:i:c:s0360544222005382. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.