IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i15p3670-d1442771.html
   My bibliography  Save this article

Analysis of Multi-Biofuel Production during Cultivation of the Green Microalga Tetraselmis subscordiformis

Author

Listed:
  • Marcin Dębowski

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Magda Dudek

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Joanna Kazimierowicz

    (Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland)

  • Piera Quattrocelli

    (Sant’Anna School of Advanced Studies, Institute of Life Sciences, BioLabs Via L. Alamanni 22, Ghezzano, 56010 Pisa, Italy)

  • Paulina Rusanowska

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Łukasz Barczak

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Anna Nowicka

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

  • Marcin Zieliński

    (Department of Environmental Engineering, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, 10-720 Olsztyn, Poland)

Abstract

Research to date has mainly focused on the properties and efficiency of the production of selected, individual types of biofuels from microalgae biomass. There are not enough studies investigating the efficiency of the production of all energy sources synthesised by these microorganisms in a single technological cycle. The aim of this research was to determine the possibilities and efficiency of the production of hydrogen, bio-oil, and methane in the continuous cycle of processing T. subcordiformis microalgae biomass. This study showed it was feasible to produce these three energy carriers, but the production protocol adopted was not necessarily valuable from the energy gain standpoint. The production of bio-oil was found to be the least viable process, as bio-oil energy value was only 1.3 kWh/MgTS. The most valuable single process for microalgae biomass conversion turned out to be methane fermentation. The highest specific gross energy gain was found after applying a protocol combining biomass production, hydrogen biosynthesis, and subsequent methane production from T. subcordiformis biomass, which yielded a total value of 1891.4 kWh/MgTS. The direct methane fermentation of T. subcordiformis biomass enabled energy production at 1769.8 kWh/MgTS.

Suggested Citation

  • Marcin Dębowski & Magda Dudek & Joanna Kazimierowicz & Piera Quattrocelli & Paulina Rusanowska & Łukasz Barczak & Anna Nowicka & Marcin Zieliński, 2024. "Analysis of Multi-Biofuel Production during Cultivation of the Green Microalga Tetraselmis subscordiformis," Energies, MDPI, vol. 17(15), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3670-:d:1442771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/15/3670/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/15/3670/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuo, Po-Chih & Illathukandy, Biju & Wu, Wei & Chang, Jo-Shu, 2021. "Energy, exergy, and environmental analyses of renewable hydrogen production through plasma gasification of microalgal biomass," Energy, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Xinyue & Chen, Heng & Zheng, Qiwei & Liu, Jun & Pan, Peiyuan & Xu, Gang & Zhao, Qinxin & Jiang, Xue, 2023. "Thermo-economic analysis of a novel hydrogen production system using medical waste and biogas with zero carbon emission," Energy, Elsevier, vol. 265(C).
    2. Elhambakhsh, Abbas & Van Duc Long, Nguyen & Lamichhane, Pradeep & Hessel, Volker, 2023. "Recent progress and future directions in plasma-assisted biomass conversion to hydrogen," Renewable Energy, Elsevier, vol. 218(C).
    3. Xu, Jialing & Rong, Siqi & Sun, Jingli & Peng, Zhiyong & Jin, Hui & Guo, Liejin & Zhang, Xiang & Zhou, Teng, 2022. "Optimal design of non-isothermal supercritical water gasification reactor: From biomass to hydrogen," Energy, Elsevier, vol. 244(PB).
    4. Chien, FengSheng & Ngo, Quang-Thanh & Hsu, Ching-Chi & Chau, Ka Yin & Mohsin, Muhammad, 2021. "Assessing the capacity of renewable power production for green energy system: a way forward towards zero carbon electrification," MPRA Paper 109667, University Library of Munich, Germany.
    5. Liu, Miaomiao & Liu, Ming & Chen, Weixiong & Yan, Junjie, 2023. "Operational flexibility and operation optimization of CHP units supplying electricity and two-pressure steam," Energy, Elsevier, vol. 263(PE).
    6. Pawlak-Kruczek, Halina & Mularski, Jakub & Ostrycharczyk, Michał & Czerep, Michał & Baranowski, Marcin & Mączka, Tadeusz & Sadowski, Krzysztof & Hulisz, Patryk, 2023. "Application of plasma burners for char combustion in a pulverized coal-fired (PC) boiler – Experimental and numerical analysis," Energy, Elsevier, vol. 279(C).
    7. Yin, Kexin & Wang, Yangyang & Wu, Qiming & Zhang, Jifu & Zhou, Yaru & Xu, Zaifeng & Zhu, Zhaoyou & Qi, Jianguang & Wang, Yinglong & Cui, Peizhe, 2024. "Thermodynamic analysis of a plasma co-gasification process for hydrogen production using sludge and food waste as mixed raw materials," Renewable Energy, Elsevier, vol. 222(C).
    8. Zhao, Xinyue & Chen, Heng & Li, Sarengaowa & Li, Wenchao & Pan, Peiyuan & Liu, Tao & Wu, Lining & Xu, Gang, 2023. "Thermodynamic and economic analysis of a novel design combining waste tire pyrolysis with silicon production waste heat recovery and organic Rankine cycle," Energy, Elsevier, vol. 283(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:15:p:3670-:d:1442771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.