IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v221y2021ics0360544221000840.html
   My bibliography  Save this article

A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system

Author

Listed:
  • Liu, Guoqiang
  • Zhou, Xuan
  • Yan, Junwei
  • Yan, Gang

Abstract

Poor indoor temperature control level is the most common issue of building space heating in Chinese district heating system (DHS). The aim of this study was to provide on-demand heating for the buildings. A temperature and time-sharing dynamic control approach was developed by integrating three energy-saving heating patterns. Given that different heating patterns had different set temperatures, unreasonable patterns switching time would cause indoor temperature to deviate from set value. To address this issue, equivalent thermal capacity of building was introduced to establish an indoor temperature prediction model and to determine the appropriate switching time. The practical application of proposed approach was based on the control system with wireless indoor temperature monitoring. A group of buildings with the same demand temperature could be controlled by one control system. A DHS in a university was selected as a case study to validate the proposed method. The experimental works include short-term and long-term validation. Short-term daily comparative experiments showed that the approach could yield heat-saving and heating on-demand for different buildings. Four heating seasons’ long-term operation data indicated the approach could save annual heat use by 14.6%–28.7%. The energy-saving effect also yielded considerable economic and environmental benefits.

Suggested Citation

  • Liu, Guoqiang & Zhou, Xuan & Yan, Junwei & Yan, Gang, 2021. "A temperature and time-sharing dynamic control approach for space heating of buildings in district heating system," Energy, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000840
    DOI: 10.1016/j.energy.2021.119835
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221000840
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.119835?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dominković, D.F. & Gianniou, P. & Münster, M. & Heller, A. & Rode, C., 2018. "Utilizing thermal building mass for storage in district heating systems: Combined building level simulations and system level optimization," Energy, Elsevier, vol. 153(C), pages 949-966.
    2. Protić, Milan & Shamshirband, Shahaboddin & Petković, Dalibor & Abbasi, Almas & Mat Kiah, Miss Laiha & Unar, Jawed Akhtar & Živković, Ljiljana & Raos, Miomir, 2015. "Forecasting of consumers heat load in district heating systems using the support vector machine with a discrete wavelet transform algorithm," Energy, Elsevier, vol. 87(C), pages 343-351.
    3. Calikus, Ece & Nowaczyk, Sławomir & Sant'Anna, Anita & Gadd, Henrik & Werner, Sven, 2019. "A data-driven approach for discovering heat load patterns in district heating," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    4. Zhang, Hui & Zhang, Bing & Bi, Jun, 2015. "More efforts, more benefits: Air pollutant control of coal-fired power plants in China," Energy, Elsevier, vol. 80(C), pages 1-9.
    5. Gadd, Henrik & Werner, Sven, 2013. "Daily heat load variations in Swedish district heating systems," Applied Energy, Elsevier, vol. 106(C), pages 47-55.
    6. Kensby, Johan & Trüschel, Anders & Dalenbäck, Jan-Olof, 2015. "Potential of residential buildings as thermal energy storage in district heating systems – Results from a pilot test," Applied Energy, Elsevier, vol. 137(C), pages 773-781.
    7. Dahl, Magnus & Brun, Adam & Andresen, Gorm B., 2017. "Using ensemble weather predictions in district heating operation and load forecasting," Applied Energy, Elsevier, vol. 193(C), pages 455-465.
    8. Tunzi, Michele & Østergaard, Dorte Skaarup & Svendsen, Svend & Boukhanouf, Rabah & Cooper, Edward, 2016. "Method to investigate and plan the application of low temperature district heating to existing hydraulic radiator systems in existing buildings," Energy, Elsevier, vol. 113(C), pages 413-421.
    9. Xu, Xin & You, Shijun & Zheng, Xuejing & Li, Han, 2014. "A survey of district heating systems in the heating regions of northern China," Energy, Elsevier, vol. 77(C), pages 909-925.
    10. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    11. Liu, Lanbin & Fu, Lin & Jiang, Yi & Guo, Shan, 2011. "Major issues and solutions in the heat-metering reform in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 673-680, January.
    12. Li, Jun & Colombier, Michel & Giraud, Pierre-Noël, 2009. "Decision on optimal building energy efficiency standard in China--The case for Tianjin," Energy Policy, Elsevier, vol. 37(7), pages 2546-2559, July.
    13. Kuczyński, T. & Staszczuk, A., 2020. "Experimental study of the influence of thermal mass on thermal comfort and cooling energy demand in residential buildings," Energy, Elsevier, vol. 195(C).
    14. Xu, Peng & Xu, Tengfang & Shen, Pengyuan, 2013. "Energy and behavioral impacts of integrative retrofits for residential buildings: What is at stake for building energy policy reforms in northern China?," Energy Policy, Elsevier, vol. 52(C), pages 667-676.
    15. Guelpa, Elisa & Marincioni, Ludovica & Capone, Martina & Deputato, Stefania & Verda, Vittorio, 2019. "Thermal load prediction in district heating systems," Energy, Elsevier, vol. 176(C), pages 693-703.
    16. Noussan, Michel & Jarre, Matteo & Poggio, Alberto, 2017. "Real operation data analysis on district heating load patterns," Energy, Elsevier, vol. 129(C), pages 70-78.
    17. Kim, Eui-Jong & He, Xi & Roux, Jean-Jacques & Johannes, Kévyn & Kuznik, Frédéric, 2019. "Fast and accurate district heating and cooling energy demand and load calculations using reduced-order modelling," Applied Energy, Elsevier, vol. 238(C), pages 963-971.
    18. Gadd, Henrik & Werner, Sven, 2013. "Heat load patterns in district heating substations," Applied Energy, Elsevier, vol. 108(C), pages 176-183.
    19. Aoun, Nadine & Bavière, Roland & Vallée, Mathieu & Aurousseau, Antoine & Sandou, Guillaume, 2019. "Modelling and flexible predictive control of buildings space-heating demand in district heating systems," Energy, Elsevier, vol. 188(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Chunhua & Chen, Jiali & Cao, Shanshan & Gao, Xiaoyu & Xia, Guoqiang & Qi, Chengying & Wu, Xiangdong, 2021. "A dynamic control strategy of district heating substations based on online prediction and indoor temperature feedback," Energy, Elsevier, vol. 235(C).
    2. Che, Zichang & Sun, Jingchao & Na, Hongming & Yuan, Yuxing & Qiu, Ziyang & Du, Tao, 2023. "A novel method for intelligent heating: On-demand optimized regulation of hydraulic balance for secondary networks," Energy, Elsevier, vol. 282(C).
    3. Boris Vladimirovich Borisov & Alexander Vitalievich Vyatkin & Geniy Vladimirovich Kuznetsov & Vyacheslav Ivanovich Maksimov & Tatiana Aleksandrovna Nagornova, 2022. "Analysis of the Influence of the Gas Infrared Heater and Equipment Element Relative Positions on Industrial Premises Thermal Conditions," Energies, MDPI, vol. 15(22), pages 1-19, November.
    4. Wang, Yanmin & Li, Zhiwei & Liu, Junjie & Pei, Mingzhe & Zhao, Yan & Lu, Xuan, 2023. "Data-driven analysis and prediction of indoor characteristic temperature in district heating systems," Energy, Elsevier, vol. 282(C).
    5. Sha, Le & Jiang, Ziwei & Sun, Hejiang, 2023. "A control strategy of heating system based on adaptive model predictive control," Energy, Elsevier, vol. 273(C).
    6. Zhong, Wei & Feng, Encheng & Lin, Xiaojie & Xie, Jinfang, 2022. "Research on data-driven operation control of secondary loop of district heating system," Energy, Elsevier, vol. 239(PB).
    7. Benakopoulos, Theofanis & Vergo, William & Tunzi, Michele & Salenbien, Robbe & Kolarik, Jakub & Svendsen, Svend, 2022. "Energy and cost savings with continuous low temperature heating versus intermittent heating of an office building with district heating," Energy, Elsevier, vol. 252(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    2. Kaisa Kontu & Jussi Vimpari & Petri Penttinen & Seppo Junnila, 2018. "City Scale Demand Side Management in Three Different-Sized District Heating Systems," Energies, MDPI, vol. 11(12), pages 1-18, December.
    3. Zhang, Fan & Bales, Chris & Fleyeh, Hasan, 2021. "Night setback identification of district heat substations using bidirectional long short term memory with attention mechanism," Energy, Elsevier, vol. 224(C).
    4. Zhang, Lipeng & Gudmundsson, Oddgeir & Thorsen, Jan Eric & Li, Hongwei & Li, Xiaopeng & Svendsen, Svend, 2016. "Method for reducing excess heat supply experienced in typical Chinese district heating systems by achieving hydraulic balance and improving indoor air temperature control at the building level," Energy, Elsevier, vol. 107(C), pages 431-442.
    5. Kim, Ryunhee & Hong, Yejin & Choi, Youngwoong & Yoon, Sungmin, 2021. "System-level fouling detection of district heating substations using virtual-sensor-assisted building automation system," Energy, Elsevier, vol. 227(C).
    6. Triebs, Merlin Sebastian & Tsatsaronis, George, 2022. "From heat demand to heat supply: How to obtain more accurate feed-in time series for district heating systems," Applied Energy, Elsevier, vol. 311(C).
    7. Tommy Rosén & Louise Ödlund, 2019. "Active Management of Heat Customers Towards Lower District Heating Return Water Temperature," Energies, MDPI, vol. 12(10), pages 1-20, May.
    8. Guelpa, E. & Capone, M. & Sciacovelli, A. & Vasset, N. & Baviere, R. & Verda, V., 2023. "Reduction of supply temperature in existing district heating: A review of strategies and implementations," Energy, Elsevier, vol. 262(PB).
    9. Salman Siddiqui & Mark Barrett & John Macadam, 2021. "A High Resolution Spatiotemporal Urban Heat Load Model for GB," Energies, MDPI, vol. 14(14), pages 1-28, July.
    10. Turski, Michał & Nogaj, Kinga & Sekret, Robert, 2019. "The use of a PCM heat accumulator to improve the efficiency of the district heating substation," Energy, Elsevier, vol. 187(C).
    11. Ashfaq, Asad & Ianakiev, Anton, 2018. "Investigation of hydraulic imbalance for converting existing boiler based buildings to low temperature district heating," Energy, Elsevier, vol. 160(C), pages 200-212.
    12. Werner, Sven, 2017. "District heating and cooling in Sweden," Energy, Elsevier, vol. 126(C), pages 419-429.
    13. Guelpa, Elisa, 2021. "Impact of thermal masses on the peak load in district heating systems," Energy, Elsevier, vol. 214(C).
    14. Xue, Puning & Zhou, Zhigang & Fang, Xiumu & Chen, Xin & Liu, Lin & Liu, Yaowen & Liu, Jing, 2017. "Fault detection and operation optimization in district heating substations based on data mining techniques," Applied Energy, Elsevier, vol. 205(C), pages 926-940.
    15. Shamshirband, Shahaboddin & Petković, Dalibor & Enayatifar, Rasul & Hanan Abdullah, Abdul & Marković, Dušan & Lee, Malrey & Ahmad, Rodina, 2015. "Heat load prediction in district heating systems with adaptive neuro-fuzzy method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 760-767.
    16. Janne Suhonen & Juha Jokisalo & Risto Kosonen & Ville Kauppi & Yuchen Ju & Philipp Janßen, 2020. "Demand Response Control of Space Heating in Three Different Building Types in Finland and Germany," Energies, MDPI, vol. 13(23), pages 1-35, November.
    17. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    18. Guelpa, Elisa & Verda, Vittorio, 2021. "Demand response and other demand side management techniques for district heating: A review," Energy, Elsevier, vol. 219(C).
    19. Dmytro Romanchenko & Emil Nyholm & Mikael Odenberger & Filip Johnsson, 2019. "Flexibility Potential of Space Heating Demand Response in Buildings for District Heating Systems," Energies, MDPI, vol. 12(15), pages 1-23, July.
    20. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:221:y:2021:i:c:s0360544221000840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.