IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220327651.html
   My bibliography  Save this article

Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model

Author

Listed:
  • Chen, Pengfan
  • Yang, Peng
  • Liu, Liu
  • Liu, Yingwen

Abstract

In this study, to reveal the phase characteristics of a beta-type free piston Stirling engine (β-FPSE), a thermodynamic-dynamic coupled model is proposed and verified experimentally. With the phasor notation method, the influences of the heating temperature, cooling temperature, spring stiffness and damping coefficients on the phases of displacer and power piston, and the output performance are investigated. The results indicate that the phase angles of the displacer and power piston increase with the heating temperature, and decrease with the cooling temperature. In the variation of power piston phase with its spring stiffness, a point of temperature independence (PTI) is identified. In the variation in the power piston phase with the displacer damping coefficient, a point of damping balance (PDB) is identified. A hysteresis of the PDB will occur if the heating temperature increases. In addition, the output power and power angle are obtained at the same damping coefficient of the displacer, which is equal to the displacer damping coefficient at the PDB if the spring stiffness ratio is less than 3.31. Moreover, based on the PV diagrams of different spring stiffness and damping coefficients, the compression ratio and pressure ratio for the optimum output power and efficiency are determined, respectively.

Suggested Citation

  • Chen, Pengfan & Yang, Peng & Liu, Liu & Liu, Yingwen, 2021. "Parametric investigation of the phase characteristics of a beta-type free piston Stirling engine based on a thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327651
    DOI: 10.1016/j.energy.2020.119658
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220327651
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119658?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karabulut, Halit, 2011. "Dynamic analysis of a free piston Stirling engine working with closed and open thermodynamic cycles," Renewable Energy, Elsevier, vol. 36(6), pages 1704-1709.
    2. Ahmadi, Mohammad H. & Ahmadi, Mohammad-Ali & Pourfayaz, Fathollah, 2017. "Thermal models for analysis of performance of Stirling engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 168-184.
    3. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.
    4. Ye, Wenlian & Wang, Xiaojun & Liu, Yingwen, 2020. "Application of artificial neural network for predicting the dynamic performance of a free piston Stirling engine," Energy, Elsevier, vol. 194(C).
    5. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    6. de la Bat, B.J.G. & Harms, T.M. & Dobson, R.T. & Bell, A.J., 2020. "Derivation and numerical case study of a one-dimensional, compressible-flow model of a novel free-piston Stirling engine," Energy, Elsevier, vol. 199(C).
    7. de la Bat, B.J.G. & Dobson, R.T. & Harms, T.M. & Bell, A.J., 2020. "Simulation, manufacture and experimental validation of a novel single-acting free-piston Stirling engine electric generator," Applied Energy, Elsevier, vol. 263(C).
    8. Zare, Sh. & Tavakolpour-Saleh, A.R., 2016. "Frequency-based design of a free piston Stirling engine using genetic algorithm," Energy, Elsevier, vol. 109(C), pages 466-480.
    9. Mou, Jian & Hong, Guotong, 2017. "Startup mechanism and power distribution of free piston Stirling engine," Energy, Elsevier, vol. 123(C), pages 655-663.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Pengfan & Zhong, Geyu & Niu, Yafeng & Liu, Yingwen, 2022. "Performance optimization of a free piston stirling engine using multi-section regenerators based on the response surface methodology," Energy, Elsevier, vol. 261(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zare, Shahryar & Tavakolpour-saleh, A.R. & Aghahosseini, A. & Sangdani, M.H. & Mirshekari, Reza, 2021. "Design and optimization of Stirling engines using soft computing methods: A review," Applied Energy, Elsevier, vol. 283(C).
    2. Zare, Shahryar & Tavakolpour-Saleh, A.R., 2020. "Predicting onset conditions of a free piston Stirling engine," Applied Energy, Elsevier, vol. 262(C).
    3. Zare, Shahryar & Tavakolpour-Saleh, Alireza & Shourangiz-Haghighi, Alireza & Binazadeh, Tahereh, 2019. "Assessment of damping coefficients ranges in design of a free piston Stirling engine: Simulation and experiment," Energy, Elsevier, vol. 185(C), pages 633-643.
    4. Zhu, Shunmin & Yu, Guoyao & O, Jongmin & Xu, Tao & Wu, Zhanghua & Dai, Wei & Luo, Ercang, 2018. "Modeling and experimental investigation of a free-piston Stirling engine-based micro-combined heat and power system," Applied Energy, Elsevier, vol. 226(C), pages 522-533.
    5. Carmela Perozziello & Lavinia Grosu & Bianca Maria Vaglieco, 2021. "Free-Piston Stirling Engine Technologies and Models: A Review," Energies, MDPI, vol. 14(21), pages 1-22, October.
    6. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2021. "Justifying performance of thermo-acoustic Stirling engines based on a novel lumped mechanical model," Energy, Elsevier, vol. 227(C).
    7. Mou, Jian & Hong, Guotong, 2017. "Startup mechanism and power distribution of free piston Stirling engine," Energy, Elsevier, vol. 123(C), pages 655-663.
    8. Qiu, Hao & Wang, Kai & Yu, Peifeng & Ni, Mingjiang & Xiao, Gang, 2021. "A third-order numerical model and transient characterization of a β-type Stirling engine," Energy, Elsevier, vol. 222(C).
    9. Tavakolpour-Saleh, A.R., 2021. "A novel theorem on motion stability," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    10. Tavakolpour-Saleh, A.R. & Zare, SH. & Bahreman, H., 2017. "A novel active free piston Stirling engine: Modeling, development, and experiment," Applied Energy, Elsevier, vol. 199(C), pages 400-415.
    11. Ye, Wenlian & Zhang, Ting & Wang, Xiaojun & Liu, Yingwen & Chen, Pengfan, 2020. "Parametric study of gamma-type free piston stirling engine using nonlinear thermodynamic-dynamic coupled model," Energy, Elsevier, vol. 211(C).
    12. Zare, Shahryar & Tavakolpour-Saleh, A.R. & Binazadeh, T., 2023. "Analytical investigation of free piston Stirling engines using practical stability method," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
    13. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    14. Remiorz, Leszek & Kotowicz, Janusz & Uchman, Wojciech, 2018. "Comparative assessment of the effectiveness of a free-piston Stirling engine-based micro-cogeneration unit and a heat pump," Energy, Elsevier, vol. 148(C), pages 134-147.
    15. Yousefzadeh, H. & Tavakolpour-Saleh, A.R., 2021. "A novel unified dynamic-thermodynamic method for estimating damping and predicting performance of kinematic Stirling engines," Energy, Elsevier, vol. 224(C).
    16. Rahmati, A. & Varedi-Koulaei, S.M. & Ahmadi, M.H. & Ahmadi, H., 2022. "Dynamic synthesis of the alpha-type stirling engine based on reducing the output velocity fluctuations using Metaheuristic algorithms," Energy, Elsevier, vol. 238(PB).
    17. Sun, Haojie & Yu, Guoyao & Zhao, Dan & Dai, Wei & Luo, Ercang, 2023. "Thermoacoustic hysteresis of a free-piston Stirling electric generator," Energy, Elsevier, vol. 280(C).
    18. Ayodeji Sowale & Edward J. Anthony & Athanasios John Kolios, 2018. "Optimisation of a Quasi-Steady Model of a Free-Piston Stirling Engine," Energies, MDPI, vol. 12(1), pages 1-17, December.
    19. Tavakolpour-Saleh, A.R. & Zare, Shahryar, 2019. "An averaging-based Lyapunov technique to design thermal oscillators: A case study on free piston Stirling engine," Energy, Elsevier, vol. 189(C).
    20. Tavakolpour-Saleh, A.R. & Zare, Sh. & Omidvar, A., 2016. "Applying perturbation technique to analysis of a free piston Stirling engine possessing nonlinear springs," Applied Energy, Elsevier, vol. 183(C), pages 526-541.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220327651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.