IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v219y2021ics0360544220326207.html
   My bibliography  Save this article

Multi-electron reactions for the synthesis of a vanadium-based amorphous material as lithium-ion battery cathode with high specific capacity

Author

Listed:
  • Kong, Fanhou
  • Liang, Xue
  • Yi, Lanlin
  • Fang, Xiaohui
  • Yin, Zhongbin
  • Wang, Yulong
  • Zhang, Ruixiang
  • Liu, Longyang
  • Chen, Qing
  • Li, Minghan
  • Li, Changjiu
  • Jiang, Hong
  • Chen, Yongjun

Abstract

The vanadium-based amorphous electrode material can realize the valence state conversion and increase its specific capacity through the multi-electron reaction. We have obtained V2O5–Li3PO4 glass with a strong reducing agent CaC2, realizing a multi-electron reaction of V5+ to V4+ and then to V3+ in the model system. Moreover, we have explored the relationship between valence state, crystallinity, and conductivity limit to compare the cycle performances of amorphous glass batteries. The CaC2 content of 20%, V4+ presented the dominating valence state with a content of 77.5%. VP-C20% exhibited a maximum specific capacity of 319.3 mAh g−1, and the specific capacity after 100 cycles was 280.3 mAh g−1, corresponding to a retention capacity of 87.8%. The electrochemical performance of amorphous vanadium oxide decreased with the increase of the LiV2O5’s nanocrystallinity. Crystallinity and the controllable multi-electron reaction could provide an important reference for designing other new electrode materials with high capacity and long cycle life.

Suggested Citation

  • Kong, Fanhou & Liang, Xue & Yi, Lanlin & Fang, Xiaohui & Yin, Zhongbin & Wang, Yulong & Zhang, Ruixiang & Liu, Longyang & Chen, Qing & Li, Minghan & Li, Changjiu & Jiang, Hong & Chen, Yongjun, 2021. "Multi-electron reactions for the synthesis of a vanadium-based amorphous material as lithium-ion battery cathode with high specific capacity," Energy, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326207
    DOI: 10.1016/j.energy.2020.119513
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220326207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119513?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Ma, Junpeng & Luo, Guangzhao & Teodorescu, Remus, 2020. "An optimized ensemble learning framework for lithium-ion Battery State of Health estimation in energy storage system," Energy, Elsevier, vol. 206(C).
    2. Chang, Chia-Chin & Huang, Sin-Yi & Chen, Wei-Hsin, 2019. "Thermal and solid electrolyte interphase characterization of lithium-ion battery," Energy, Elsevier, vol. 174(C), pages 999-1011.
    3. Huang, Zonghou & Zhao, Chunpeng & Li, Huang & Peng, Wen & Zhang, Zheng & Wang, Qingsong, 2020. "Experimental study on thermal runaway and its propagation in the large format lithium ion battery module with two electrical connection modes," Energy, Elsevier, vol. 205(C).
    4. Qi Liu & Zhe-Fei Li & Yadong Liu & Hangyu Zhang & Yang Ren & Cheng-Jun Sun & Wenquan Lu & Yun Zhou & Lia Stanciu & Eric A. Stach & Jian Xie, 2015. "Graphene-modified nanostructured vanadium pentoxide hybrids with extraordinary electrochemical performance for Li-ion batteries," Nature Communications, Nature, vol. 6(1), pages 1-10, May.
    5. Yang, Fangfang & Li, Weihua & Li, Chuan & Miao, Qiang, 2019. "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, Elsevier, vol. 175(C), pages 66-75.
    6. Pei, Pucheng & Zhou, Qibin & Wu, Lei & Wu, Ziyao & Hua, Jianfeng & Fan, Huimin, 2020. "Capacity estimation for lithium-ion battery using experimental feature interval approach," Energy, Elsevier, vol. 203(C).
    7. Tian, Jiaqiang & Wang, Yujie & Liu, Chang & Chen, Zonghai, 2020. "Consistency evaluation and cluster analysis for lithium-ion battery pack in electric vehicles," Energy, Elsevier, vol. 194(C).
    8. Jeffrey G. Smith & Donald J. Siegel, 2020. "Low-temperature paddlewheel effect in glassy solid electrolytes," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    9. Wang, Zengkai & Zeng, Shengkui & Guo, Jianbin & Qin, Taichun, 2019. "State of health estimation of lithium-ion batteries based on the constant voltage charging curve," Energy, Elsevier, vol. 167(C), pages 661-669.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Che, Yunhong & Deng, Zhongwei & Li, Penghua & Tang, Xiaolin & Khosravinia, Kavian & Lin, Xianke & Hu, Xiaosong, 2022. "State of health prognostics for series battery packs: A universal deep learning method," Energy, Elsevier, vol. 238(PB).
    2. Wu, Yaqin & Wang, Feiyue & Fan, Zhupu & Wang, Zihang & Yang, Wenying & Ju, Wenqin & Lei, Weixin & Zou, Youlan & Ma, Zengsheng, 2022. "Internally enhanced conductive 3D porous hierarchical biochar framework for lithium sulfur battery," Energy, Elsevier, vol. 255(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Gengfeng & Zhang, Xiangwen & Liu, Zhiming, 2022. "State of health estimation of power batteries based on multi-feature fusion models using stacking algorithm," Energy, Elsevier, vol. 259(C).
    2. Lin, Chuanping & Xu, Jun & Shi, Mingjie & Mei, Xuesong, 2022. "Constant current charging time based fast state-of-health estimation for lithium-ion batteries," Energy, Elsevier, vol. 247(C).
    3. Ospina Agudelo, Brian & Zamboni, Walter & Postiglione, Fabio & Monmasson, Eric, 2023. "Battery State-of-Health estimation based on multiple charge and discharge features," Energy, Elsevier, vol. 263(PA).
    4. Guo, Yuanjun & Yang, Zhile & Liu, Kailong & Zhang, Yanhui & Feng, Wei, 2021. "A compact and optimized neural network approach for battery state-of-charge estimation of energy storage system," Energy, Elsevier, vol. 219(C).
    5. Zhao, Dao & Zhou, Zhijie & Tang, Shuaiwen & Cao, You & Wang, Jie & Zhang, Peng & Zhang, Yijun, 2022. "Online estimation of satellite lithium-ion battery capacity based on approximate belief rule base and hidden Markov model," Energy, Elsevier, vol. 256(C).
    6. Wei, Jingwen & Chen, Chunlin, 2021. "A multi-timescale framework for state monitoring and lifetime prognosis of lithium-ion batteries," Energy, Elsevier, vol. 229(C).
    7. He, Qiang & Yang, Yang & Luo, Chang & Zhai, Jun & Luo, Ronghua & Fu, Chunyun, 2022. "Energy recovery strategy optimization of dual-motor drive electric vehicle based on braking safety and efficient recovery," Energy, Elsevier, vol. 248(C).
    8. Chang, Chun & Wu, Yutong & Jiang, Jiuchun & Jiang, Yan & Tian, Aina & Li, Taiyu & Gao, Yang, 2022. "Prognostics of the state of health for lithium-ion battery packs in energy storage applications," Energy, Elsevier, vol. 239(PB).
    9. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    10. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    11. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    12. Chen, Dongfang & Pan, Lyuming & Pei, Pucheng & Huang, Shangwei & Ren, Peng & Song, Xin, 2021. "Carbon-coated oxygen vacancies-rich Co3O4 nanoarrays grow on nickel foam as efficient bifunctional electrocatalysts for rechargeable zinc-air batteries," Energy, Elsevier, vol. 224(C).
    13. Daniels, Rojo Kurian & Kumar, Vikas & Chouhan, Satyendra Singh & Prabhakar, Aneesh, 2024. "Thermal runaway fault prediction in air-cooled lithium-ion battery modules using machine learning through temperature sensors placement optimization," Applied Energy, Elsevier, vol. 355(C).
    14. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    15. Hu, Chunsheng & Ma, Liang & Guo, Shanshan & Guo, Gangsheng & Han, Zhiqiang, 2022. "Deep learning enabled state-of-charge estimation of LiFePO4 batteries: A systematic validation on state-of-the-art charging protocols," Energy, Elsevier, vol. 246(C).
    16. Li, Yihuan & Li, Kang & Liu, Xuan & Li, Xiang & Zhang, Li & Rente, Bruno & Sun, Tong & Grattan, Kenneth T.V., 2022. "A hybrid machine learning framework for joint SOC and SOH estimation of lithium-ion batteries assisted with fiber sensor measurements," Applied Energy, Elsevier, vol. 325(C).
    17. Panagiotis Eleftheriadis & Spyridon Giazitzis & Sonia Leva & Emanuele Ogliari, 2023. "Data-Driven Methods for the State of Charge Estimation of Lithium-Ion Batteries: An Overview," Forecasting, MDPI, vol. 5(3), pages 1-24, September.
    18. Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
    19. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2019. "A unified model to optimize configuration of battery energy storage systems with multiple types of batteries," Energy, Elsevier, vol. 176(C), pages 552-560.
    20. Liang Zhang & Shunli Wang & Daniel-Ioan Stroe & Chuanyun Zou & Carlos Fernandez & Chunmei Yu, 2020. "An Accurate Time Constant Parameter Determination Method for the Varying Condition Equivalent Circuit Model of Lithium Batteries," Energies, MDPI, vol. 13(8), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:219:y:2021:i:c:s0360544220326207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.