IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v218y2021ics036054422032627x.html
   My bibliography  Save this article

Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production

Author

Listed:
  • Zhao, Zhenlu
  • Wu, Haoxi
  • Li, Chuanping

Abstract

Constructing highly active electrocatalysts for hydrogen evolution reaction (HER) have drawn considerable attention recently. However, how to design nanostructured electrocatalysts with enhanced catalytic performances is still a challenge. Herein, plasmonic Ag/Au hollow porous nanoshells decorated with porous Fe2P thin layers (denoted as Ag/Au-HPNSs@PFP) are fabricated, in which porous Fe2P (PFP) thin layers are derived from pyrolysis and phosphidation of MIL-100(Fe) coated on plasmonic Ag/Au hollow porous nanoshells (Ag/Au-HPNSs) and the high porosity of the HER-active Fe2P, along with plasmonic enhancement of the Ag/Au hollow porous nanoshells, facilitates hydrogen evolution and electron transport, and accordingly boosts the electrocatalytic HER performance. When applied as a HER electrode, the hybrid electrocatalyst displays an onset overpotential of only 108 mV, satisfactory stability, and enhanced performance for hydrogen evolution under visible light, ascribing to electron interactions between Fe and P and synergistic effects of porous Fe2P and plasmonic Au/Ag hollow porous nanoshells.

Suggested Citation

  • Zhao, Zhenlu & Wu, Haoxi & Li, Chuanping, 2021. "Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production," Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:energy:v:218:y:2021:i:c:s036054422032627x
    DOI: 10.1016/j.energy.2020.119520
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422032627X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.119520?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao Zheng & Yan Jiao & Yihan Zhu & Lu Hua Li & Yu Han & Ying Chen & Aijun Du & Mietek Jaroniec & Shi Zhang Qiao, 2014. "Hydrogen evolution by a metal-free electrocatalyst," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    2. Zhang, Yuanyuan & Sun, Haohao & Qiu, Yunfeng & Zhang, Enhao & Ma, Tiange & Gao, Guang-gang & Cao, Changyan & Ma, Zhuo & Hu, PingAn, 2018. "Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method," Energy, Elsevier, vol. 165(PB), pages 537-548.
    3. Yongdong Jin & Congxian Jia & Sheng-Wen Huang & Matthew O'Donnell & Xiaohu Gao, 2010. "Multifunctional nanoparticles as coupled contrast agents," Nature Communications, Nature, vol. 1(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Wei & Tan, Wenyu & He, Hanwei & Peng, Yizhi & Chen, Yuxiang & Yang, Yang, 2022. "One–step electrodeposition of Ni–Ce–Pr–Ho/NF as an efficient electrocatalyst for hydrogen evolution reaction in alkaline medium," Energy, Elsevier, vol. 250(C).
    2. Guo, Junyan & Gao, Ruihong & Tong, Zhaoming & Zhang, Haijun & Duan, Hongjuan & Huang, Liang & Lu, Lilin & Jia, Quanli & Zhang, Shaowei, 2023. "Three eagles with one arrow: Simultaneous production of hydrogen, aluminum ethoxide, and supported metal catalysts via efficient and facile reaction between aluminum and ethanol," Energy, Elsevier, vol. 263(PD).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Murugan, Nagaraj & Thangarasu, Sadhasivam & Seo, Sol Bin & Mariappan, Athibala & Choi, Yu Rim & Oh, Tae Hwan & Kim, Yoong Ahm, 2024. "N-doped defect-rich porous carbon nanosheets framework from renewable biomass as efficient metal-free bifunctional electrocatalysts for HER and OER application," Renewable Energy, Elsevier, vol. 222(C).
    4. Shaik Gouse Peera & Ravindranadh Koutavarapu & Chao Liu & Gaddam Rajeshkhanna & Arunchander Asokan & Ch. Venkata Reddy, 2021. "Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis," Energies, MDPI, vol. 14(5), pages 1-14, March.
    5. Munonde, Tshimangadzo S. & Zheng, Haitao & Matseke, Mphoma S. & Nomngongo, Philiswa N. & Wang, Yi & Tsiakaras, Panagiotis, 2020. "A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 704-714.
    6. Liang Dong & Yun-Jun Xu & Cong Sui & Yang Zhao & Li-Bo Mao & Denis Gebauer & Rose Rosenberg & Jonathan Avaro & Ya-Dong Wu & Huai-Ling Gao & Zhao Pan & Hui-Qin Wen & Xu Yan & Fei Li & Yang Lu & Helmut , 2022. "Highly hydrated paramagnetic amorphous calcium carbonate nanoclusters as an MRI contrast agent," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    7. Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2023. "Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    8. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:218:y:2021:i:c:s036054422032627x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.