IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123017160.html
   My bibliography  Save this article

N-doped defect-rich porous carbon nanosheets framework from renewable biomass as efficient metal-free bifunctional electrocatalysts for HER and OER application

Author

Listed:
  • Murugan, Nagaraj
  • Thangarasu, Sadhasivam
  • Seo, Sol Bin
  • Mariappan, Athibala
  • Choi, Yu Rim
  • Oh, Tae Hwan
  • Kim, Yoong Ahm

Abstract

In response to the demand for clean, renewable energy sources and storage technologies, innovative materials and combinations have been developed at reasonable prices as effective electrode materials. Current research and development of carbon-based metal-free catalysts have opened up new research areas for bifunctional electrocatalysts for overall water splitting. Herein, we developed N-self-doped defect-rich porous carbon nanosheets derived from platycladus orientalis tree-cone biomass for overall water splitting. The developed N-self-doped defect-rich porous carbon nanosheets have large surface areas (3369 m2/g), high pore volumes (2.1 cm3 g−1), and high electrical conductivities (12.69 S/cm). N-self-doped defect-rich porous carbon nanosheet framework was employed in water splitting as a dual function in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Electrodes fabricated from the KOH-II ABC nanosheets show excellent OER and HER performances in the 0.5 M H2SO4 solution. The current density of 10 mA cm−2 is reached at a low overpotential of 90 mV for OER and 188 mV for HER. In addition, KOH-II ABC nanosheets also show a remarkable performance on overall water splitting, which only required a cell voltage of 1.49 V to reach current densities of 10 mA cm−2 in 0.5 M H2SO4 solution. The presence of defects in the carbon nanosheets, higher specific surface area, excellent electrochemical active surface area and N doping effectively enhance the reaction kinetics for attaining efficient OER and HER performances. This facile approach to preparing biomass-derived N-doped defect-rich porous carbon materials empowers next-generation green fuel conversion technologies for carbon neutrality.

Suggested Citation

  • Murugan, Nagaraj & Thangarasu, Sadhasivam & Seo, Sol Bin & Mariappan, Athibala & Choi, Yu Rim & Oh, Tae Hwan & Kim, Yoong Ahm, 2024. "N-doped defect-rich porous carbon nanosheets framework from renewable biomass as efficient metal-free bifunctional electrocatalysts for HER and OER application," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017160
    DOI: 10.1016/j.renene.2023.119801
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123017160
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yao Zheng & Yan Jiao & Yihan Zhu & Lu Hua Li & Yu Han & Ying Chen & Aijun Du & Mietek Jaroniec & Shi Zhang Qiao, 2014. "Hydrogen evolution by a metal-free electrocatalyst," Nature Communications, Nature, vol. 5(1), pages 1-8, September.
    2. Yong Zhao & Ryuhei Nakamura & Kazuhide Kamiya & Shuji Nakanishi & Kazuhito Hashimoto, 2013. "Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation," Nature Communications, Nature, vol. 4(1), pages 1-7, December.
    3. Qing Lv & Wenyan Si & Jianjiang He & Lei Sun & Chunfang Zhang & Ning Wang & Ze Yang & Xiaodong Li & Xin Wang & Weiqiao Deng & Yunze Long & Changshui Huang & Yuliang Li, 2018. "Selectively nitrogen-doped carbon materials as superior metal-free catalysts for oxygen reduction," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Zhenlu & Wu, Haoxi & Li, Chuanping, 2021. "Engineering iron phosphide-on-plasmonic Ag/Au-nanoshells as an efficient cathode catalyst in water splitting for hydrogen production," Energy, Elsevier, vol. 218(C).
    2. Wei Wang & Qun Song & Qiang Luo & Linqian Li & Xiaobing Huo & Shipeng Chen & Jinyang Li & Yunhong Li & Se Shi & Yihui Yuan & Xiwen Du & Kai Zhang & Ning Wang, 2023. "Photothermal-enabled single-atom catalysts for high-efficiency hydrogen peroxide photosynthesis from natural seawater," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Jie Wei & Hua Tang & Li Sheng & Ruyang Wang & Minghui Fan & Jiale Wan & Yuheng Wu & Zhirong Zhang & Shiming Zhou & Jie Zeng, 2024. "Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    4. Cong Liu & Bingbao Mei & Zhaoping Shi & Zheng Jiang & Junjie Ge & Wei Xing & Ping Song & Weilin Xu, 2024. "Operando formation of highly efficient electrocatalysts induced by heteroatom leaching," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    5. Xiaoqing Yan & Mengyang Xia & Hanxuan Liu & Bin Zhang & Chunran Chang & Lianzhou Wang & Guidong Yang, 2023. "An electron-hole rich dual-site nickel catalyst for efficient photocatalytic overall water splitting," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Yang Gao & Yurui Xue & Lu Qi & Chengyu Xing & Xuchen Zheng & Feng He & Yuliang Li, 2022. "Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Pengcheng Ye & Keqing Fang & Haiyan Wang & Yahao Wang & Hao Huang & Chenbin Mo & Jiqiang Ning & Yong Hu, 2024. "Lattice oxygen activation and local electric field enhancement by co-doping Fe and F in CoO nanoneedle arrays for industrial electrocatalytic water oxidation," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    8. Shaik Gouse Peera & Ravindranadh Koutavarapu & Chao Liu & Gaddam Rajeshkhanna & Arunchander Asokan & Ch. Venkata Reddy, 2021. "Cobalt Nanoparticle-Embedded Nitrogen-Doped Carbon Catalyst Derived from a Solid-State Metal-Organic Framework Complex for OER and HER Electrocatalysis," Energies, MDPI, vol. 14(5), pages 1-14, March.
    9. Ance Plavniece & Aleksandrs Volperts & Galina Dobele & Aivars Zhurinsh & Kätlin Kaare & Ivar Kruusenberg & Kaspars Kaprans & Ainars Knoks & Janis Kleperis, 2021. "Wood and Black Liquor-Based N-Doped Activated Carbon for Energy Application," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    10. Yifan Gao & Shuai Liang & Biming Liu & Chengxu Jiang & Chenyang Xu & Xiaoyuan Zhang & Peng Liang & Menachem Elimelech & Xia Huang, 2023. "Subtle tuning of nanodefects actuates highly efficient electrocatalytic oxidation," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    11. Munonde, Tshimangadzo S. & Zheng, Haitao & Matseke, Mphoma S. & Nomngongo, Philiswa N. & Wang, Yi & Tsiakaras, Panagiotis, 2020. "A green approach for enhancing the electrocatalytic activity and stability of NiFe2O4/CB nanospheres towards hydrogen production," Renewable Energy, Elsevier, vol. 154(C), pages 704-714.
    12. Qahtan, Talal F. & Alade, Ibrahim O. & Rahaman, Md Safiqur & Saleh, Tawfik A., 2023. "Mapping the research landscape of hydrogen production through electrocatalysis: A decade of progress and key trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    13. Amelia Carolina Sparavigna, 2023. "The Routes to Magnetic Graphene, from Decorations with Nanoparticles to the Broken Symmetry of its Honeycomb Lattice Bonds," International Journal of Sciences, Office ijSciences, vol. 12(03), pages 51-60, March.
    14. Fanpeng Cheng & Xianyun Peng & Lingzi Hu & Bin Yang & Zhongjian Li & Chung-Li Dong & Jeng-Lung Chen & Liang-Ching Hsu & Lecheng Lei & Qiang Zheng & Ming Qiu & Liming Dai & Yang Hou, 2022. "Accelerated water activation and stabilized metal-organic framework via constructing triangular active-regions for ampere-level current density hydrogen production," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123017160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.