IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1650-d154297.html
   My bibliography  Save this article

The Effect of Fuel Injection Equipment of Water-In-Diesel Emulsions on Micro-Explosion Behaviour

Author

Listed:
  • Mhadi A. Ismael

    (Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia)

  • Morgan R. Heikal

    (Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia
    School of Computing Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK)

  • A. Rashid A. Aziz

    (Mechanical Engineering Department, Universiti Teknologi Petronas, Seri Iskandar 32610, Malaysia)

  • Cyril Crua

    (School of Computing Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK)

Abstract

The number and size distributions of the water dispersed phase have a significant effect on both the long-term stability of an emulsion, and the probability of micro-explosions inside an engine. The emulsions are subjected to intense pressure and shear flow in the fuel injection equipment resulting in changes in the number and size distributions of the dispersed phase. These changes, in turn, have significant effects on the micro-explosion behavior of the droplets. To our knowledge, these effects are not known and have not been reported previously. To uncover some of these effects we carried out a comprehensive experimental investigation on an emulsion spray of 10% water (by volume) in diesel at different injection pressures of 500, 1000 and 1500 bar. A measurement system consisting of a high-speed camera was used to visualize the droplets’ micro-explosions and a thermocouple measured the temperature. Our measurements indicated that the emulsion shear in the injector nozzle shifted the emulsion droplet size distribution towards the smaller end resulting in a delay in the onset of micro-explosion. This delay in the onset of the micro-explosion is thought to be due to the decrease in the dispersed water coalescence rate which, in turn, increases the stability of the emulsion. The results also show that this delay in the onset of micro-explosion, and the temperature required for its onset, increased with injection pressure.

Suggested Citation

  • Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua, 2018. "The Effect of Fuel Injection Equipment of Water-In-Diesel Emulsions on Micro-Explosion Behaviour," Energies, MDPI, vol. 11(7), pages 1-13, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1650-:d:154297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1650/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1650/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seomoon Yang & Hoonyoung Moon & Changhee Lee, 2017. "A Study of Spill Control Characteristics of JP-8 and Conventional Diesel Fuel with a Common Rail Direct Injection System," Energies, MDPI, vol. 10(12), pages 1-14, December.
    2. Xiaoqing Zhang & Tie Li & Pengfei Ma & Bin Wang, 2017. "Spray Combustion Characteristics and Soot Emission Reduction of Hydrous Ethanol Diesel Emulsion Fuel Using Color-Ratio Pyrometry," Energies, MDPI, vol. 10(12), pages 1-13, December.
    3. Park, Sangki & Woo, Seungchul & Kim, Hyungik & Lee, Kihyung, 2016. "The characteristic of spray using diesel water emulsified fuel in a diesel engine," Applied Energy, Elsevier, vol. 176(C), pages 209-220.
    4. Liyan Feng & Baoguo Du & Jiangping Tian & Wuqiang Long & Bin Tang, 2015. "Combustion Performance and Emission Characteristics of a Diesel Engine Using a Water-Emulsified Heavy Fuel Oil and Light Diesel Blend," Energies, MDPI, vol. 8(12), pages 1-13, December.
    5. Yang, W.M. & An, H. & Chou, S.K. & Chua, K.J. & Mohan, B. & Sivasankaralingam, V. & Raman, V. & Maghbouli, A. & Li, J., 2013. "Impact of emulsion fuel with nano-organic additives on the performance of diesel engine," Applied Energy, Elsevier, vol. 112(C), pages 1206-1212.
    6. Zejun Liu & Xiaoping Hu & Zhen He & Jianjun Wu, 2012. "Experimental Study on the Combustion and Microexplosion of Freely Falling Gelled Unsymmetrical Dimethylhydrazine (UDMH) Fuel Droplets," Energies, MDPI, vol. 5(8), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    2. Jungmo Oh & Myeonghwan Im & Seungjin Oh & Changhee Lee, 2019. "Comparison of NOx and Smoke Characteristics of Water-in-Oil Emulsion and Marine Diesel Oil in 400-kW Marine Generator Engine," Energies, MDPI, vol. 12(2), pages 1-15, January.
    3. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    4. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    5. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ismael, Mhadi A. & Heikal, Morgan R. & Aziz, A. Rashid A. & Syah, Firman & Zainal A., Ezrann Z. & Crua, Cyril, 2018. "The effect of fuel injection equipment on the dispersed phase of water-in-diesel emulsions," Applied Energy, Elsevier, vol. 222(C), pages 762-771.
    2. Mhadi A. Ismael & Morgan R. Heikal & A. Rashid A. Aziz & Cyril Crua & Mohmmed El-Adawy & Zuhaib Nissar & Masri B. Baharom & Ezrann Z. Zainal A. & Firmansyah, 2018. "Investigation of Puffing and Micro-Explosion of Water-in-Diesel Emulsion Spray Using Shadow Imaging," Energies, MDPI, vol. 11(9), pages 1-12, August.
    3. Ayhan, Vezir & Ece, Yılmaz Mert, 2020. "New application to reduce NOx emissions of diesel engines: Electronically controlled direct water injection at compression stroke," Applied Energy, Elsevier, vol. 260(C).
    4. Seifi, Mohammad Reza & Desideri, Umberto & Ghorbani, Zahra & Antonelli, Marco & Frigo, Stefano & Hassan-Beygi, Seyed Reza & Ghobadian, Barat, 2019. "Statistical evaluation of the effect of water percentage in water-diesel emulsion on the engine performance and exhaust emission parameters," Energy, Elsevier, vol. 180(C), pages 797-806.
    5. Dmitrii V. Antonov & Roman M. Fedorenko & Pavel A. Strizhak, 2022. "Micro-Explosion Phenomenon: Conditions and Benefits," Energies, MDPI, vol. 15(20), pages 1-19, October.
    6. Vellaiyan, Suresh, 2023. "Recent advancements in water emulsion fuel to explore efficient and cleaner production from various biodiesels: A retrospective review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    7. Ahari, Mehrdad Farajzadeh & Neshat, Elaheh, 2019. "Advanced analysis of various effects of water on natural gas HCCI combustion, emissions and chemical procedure using artificial inert species," Energy, Elsevier, vol. 171(C), pages 842-852.
    8. Bora, Plaban & Konwar, Lakhya Jyoti & Boro, Jutika & Phukan, Mayur Mausoom & Deka, Dhanapati & Konwar, Bolin Kumar, 2014. "Hybrid biofuels from non-edible oils: A comparative standpoint with corresponding biodiesel," Applied Energy, Elsevier, vol. 135(C), pages 450-460.
    9. Karthic, S.V. & Senthil Kumar, M., 2021. "Experimental investigations on hydrogen biofueled reactivity controlled compression ignition engine using open ECU," Energy, Elsevier, vol. 229(C).
    10. Elena Magaril & Romen Magaril & Hussain H. Al-Kayiem & Elena Skvortsova & Ilya Anisimov & Elena Cristina Rada, 2019. "Investigation on the Possibility of Increasing the Environmental Safety and Fuel Efficiency of Vehicles by Means of Gasoline Nano-Additive," Sustainability, MDPI, vol. 11(7), pages 1-10, April.
    11. Ogunkoya, Dolanimi & Li, Shuai & Rojas, Orlando J. & Fang, Tiegang, 2015. "Performance, combustion, and emissions in a diesel engine operated with fuel-in-water emulsions based on lignin," Applied Energy, Elsevier, vol. 154(C), pages 851-861.
    12. Pos, Radboud & Wardle, Robert & Cracknell, Roger & Ganippa, Lionel, 2017. "Spatio-temporal evolution of diesel sprays at the early start of injection," Applied Energy, Elsevier, vol. 205(C), pages 391-398.
    13. Hasannuddin, A.K. & Wira, J.Y. & Sarah, S. & Ahmad, M.I. & Aizam, S.A. & Aiman, M.A.B. & Watanabe, S. & Hirofumi, N. & Azrin, M.A., 2016. "Durability studies of single cylinder diesel engine running on emulsion fuel," Energy, Elsevier, vol. 94(C), pages 557-568.
    14. Şahin, Zehra & Aksu, Orhan N., 2015. "Experimental investigation of the effects of using low ratio n-butanol/diesel fuel blends on engine performance and exhaust emissions in a turbocharged DI diesel engine," Renewable Energy, Elsevier, vol. 77(C), pages 279-290.
    15. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    16. Kazuhiro Yamamoto & Yusei Akai & Naoki Hayashi, 2022. "Numerical Simulation of Spray Combustion with Ultrafine Oxygen Bubbles," Energies, MDPI, vol. 15(22), pages 1-15, November.
    17. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.
    18. Yuan, Xingzhong & Ding, Xiaowei & Leng, Lijian & Li, Hui & Shao, Jianguang & Qian, Yingying & Huang, Huajun & Chen, Xiaohong & Zeng, Guangming, 2018. "Applications of bio-oil-based emulsions in a DI diesel engine: The effects of bio-oil compositions on engine performance and emissions," Energy, Elsevier, vol. 154(C), pages 110-118.
    19. De Giorgi, Maria Grazia & Fontanarosa, Donato & Ficarella, Antonio & Pescini, Elisa, 2020. "Effects on performance, combustion and pollutants of water emulsified fuel in an aeroengine combustor," Applied Energy, Elsevier, vol. 260(C).
    20. Donggi Lee & Jonghan Won & Seung Wook Baek & Hyemin Kim, 2018. "Autoignition Behavior of an Ethanol-Methylcellulose Gel Droplet in a Hot Environment," Energies, MDPI, vol. 11(8), pages 1-11, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1650-:d:154297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.