IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v205y2020ics0360544220311385.html
   My bibliography  Save this article

Experimental study on evaporation and micro-explosion characteristics of biodiesel/n-propanol blended droplet

Author

Listed:
  • Huang, Xiaoyu
  • Wang, Jigang
  • Wang, Yuxin
  • Qiao, Xinqi
  • Ju, Dehao
  • Sun, Chunhua
  • Zhang, Qibin

Abstract

The evaporation and micro-explosion characteristics of biodiesel/n-propanol blended droplets at 573, 673 and 773 K ambient temperatures are studied using high-speed backlight imaging technique. The results show that the droplet evaporation is relatively stable at 573 K. However, micro-explosions occur at 673 and 773 K, the micro-explosion intensity increases with ambient temperature. The calculated superheat limit of n-propanol is 490 K. The blended droplet micro-explosion occurrence time is associated with the n-propanol concentration. The lower content of n-propanol, the earlier blended droplet micro-explosion occurs, and vice versa. The micro-explosion intensity and evaporation rate of the blended droplet first increase and then decrease as the n-propanol concentration increases. The micro-explosion delay time of the blended droplet first decreases and then increases with the increase of n-propanol concentration. Interestingly, the micro-explosion intensity, evaporation rate and micro-explosion delay time of droplet all reach the optimum value when the n-propanol concentration is 50%. Moreover, the oil membrane formation mechanisms of the soluble blended droplet with two different blended structures (n-propanol in biodiesel and biodiesel in n-propanol) are proposed.

Suggested Citation

  • Huang, Xiaoyu & Wang, Jigang & Wang, Yuxin & Qiao, Xinqi & Ju, Dehao & Sun, Chunhua & Zhang, Qibin, 2020. "Experimental study on evaporation and micro-explosion characteristics of biodiesel/n-propanol blended droplet," Energy, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311385
    DOI: 10.1016/j.energy.2020.118031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220311385
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yu & Huang, Ronghua & Huang, Yuhan & Huang, Sheng & Ma, Yinjie & Xu, Shijie & Zhou, Pei, 2018. "Effect of ambient temperature on the puffing characteristics of single butanol-hexadecane droplet," Energy, Elsevier, vol. 145(C), pages 430-441.
    2. Zhang, Xiaoqing & Li, Tie & Wang, Bin & Wei, Yijie, 2018. "Superheat limit and micro-explosion in droplets of hydrous ethanol-diesel emulsions at atmospheric pressure and diesel-like conditions," Energy, Elsevier, vol. 154(C), pages 535-543.
    3. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhaowen & Yuan, Bo & Cao, Junhui & Huang, Yuhan & Cheng, Xiaobei & Wang, Yuzhou & Zhang, Xinhua & Liu, Hao, 2022. "A new shift mechanism for micro-explosion of water-diesel emulsion droplets at different ambient temperatures," Applied Energy, Elsevier, vol. 323(C).
    2. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    3. Mohd Fadzli Hamid & Yew Heng Teoh & Mohamad Yusof Idroas & Mazlan Mohamed & Shukriwani Sa’ad & Sharzali Che Mat & Muhammad Khalil Abdullah & Thanh Danh Le & Heoy Geok How & Huu Tho Nguyen, 2022. "A Review of the Emulsification Method for Alternative Fuels Used in Diesel Engines," Energies, MDPI, vol. 15(24), pages 1-26, December.
    4. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Feng & Wang, Jigang & Zhou, Xincong & Qiao, Xinqi & Wen, Xiaofei, 2021. "Effect of 2, 5-dimethylfuran concentration on micro-explosive combustion characteristics of biodiesel droplet," Energy, Elsevier, vol. 224(C).
    2. Rosli, Mohd A.F. & Aziz, A. Rashid A. & Ismael, Mhadi A. & Elbashir, Nimir O. & Zainal A., Ezrann Z. & Baharom, Masri & Mohammed, Salah E., 2021. "Experimental study of micro-explosion and puffing of gas-to-liquid (GTL) fuel blends by suspended droplet method," Energy, Elsevier, vol. 218(C).
    3. Han, Kai & Liu, Yu & Wang, Chengxin & Tian, Junjian & Song, Zhihui & Lin, Qizhao & Meng, Kesheng, 2021. "Experimental study on the evaporation characteristics of biodiesel-ABE blended droplets," Energy, Elsevier, vol. 236(C).
    4. Wang, Jigang & Qiao, Xinqi & Ju, Dehao & Wang, Lintao & Sun, Chunhua, 2019. "Experimental study on the evaporation and micro-explosion characteristics of nanofuel droplet at dilute concentrations," Energy, Elsevier, vol. 183(C), pages 149-159.
    5. Zhang, Yu & Huang, Ronghua & Huang, Sheng & Zhou, Pei & Rao, Xiaoxuan & Zhang, Guojun & Qiu, Liang, 2021. "Experimental study on puffing, auto-ignition and combustion characteristics of an n-pentanol-diesel droplet," Energy, Elsevier, vol. 223(C).
    6. Ismael, Mhadi A. & A. Aziz, A. Rashid & Mohammed, Salah E. & Zainal A, Ezrann Z. & Baharom, Masri B. & Hagos, Ftwi Yohaness, 2021. "Macroscopic and microscopic spray structure of water-in-diesel emulsions," Energy, Elsevier, vol. 223(C).
    7. Anastasia Islamova & Pavel Tkachenko & Nikita Shlegel & Genii Kuznetsov, 2023. "Secondary Atomization of Fuel Oil and Fuel Oil/Water Emulsion through Droplet-Droplet Collisions and Impingement on a Solid Wall," Energies, MDPI, vol. 16(2), pages 1-27, January.
    8. Han, Kai & Pang, Bo & Zhao, Changlu & Ni, Zhaojing & Qi, Zhengda, 2019. "An experimental study of the puffing and evaporation characteristics of acetone–butanol–ethanol (ABE) and diesel blend droplets," Energy, Elsevier, vol. 183(C), pages 331-340.
    9. Han, Kai & Lin, Qizhao & Liu, Minghou & Meng, Kesheng & Ni, Zhanshi & Liu, Yu & Tian, Junjian & Qiu, Zhicong, 2022. "Experimental study on the micro-explosion characteristics of biodiesel/1-pentanol and biodiesel/ methanol blended droplets," Renewable Energy, Elsevier, vol. 196(C), pages 261-277.
    10. Zhang, Yu & Huang, Ronghua & Huang, Yuhan & Huang, Sheng & Zhou, Pei & Chen, Xi & Qin, Tian, 2018. "Experimental study on combustion characteristics of an n-butanol-biodiesel droplet," Energy, Elsevier, vol. 160(C), pages 490-499.
    11. Won, Jonghan & Baek, Seung Wook & Kim, Hyemin, 2018. "Autoignition and combustion behavior of emulsion droplet under elevated temperature and pressure conditions," Energy, Elsevier, vol. 163(C), pages 800-810.
    12. Jonghan Won & Seung Wook Baek & Hyemin Kim & Hookyung Lee, 2019. "The Viscosity and Combustion Characteristics of Single-Droplet Water-Diesel Emulsion," Energies, MDPI, vol. 12(10), pages 1-12, May.
    13. Zhang, Xiaoqing & Li, Tie & Wang, Bin & Wei, Yijie, 2018. "Superheat limit and micro-explosion in droplets of hydrous ethanol-diesel emulsions at atmospheric pressure and diesel-like conditions," Energy, Elsevier, vol. 154(C), pages 535-543.
    14. Wang, Zhaowen & Yuan, Bo & Cao, Junhui & Huang, Yuhan & Cheng, Xiaobei & Wang, Yuzhou & Zhang, Xinhua & Liu, Hao, 2022. "A new shift mechanism for micro-explosion of water-diesel emulsion droplets at different ambient temperatures," Applied Energy, Elsevier, vol. 323(C).
    15. Hosseinzadeh-Bandbafha, Homa & Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Orooji, Yasin & Shahbeik, Hossein & Mahian, Omid & Karimi-Maleh, Hassan & Kalam, Md Abul & Salehi Jouzani, Gholamreza & M, 2023. "Applications of nanotechnology in biodiesel combustion and post-combustion stages," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    16. Chen, Zhenbin & Wang, Li & Wei, Zhilong & Wang, Yu & Deng, Jiaojun, 2022. "Effect of components on the emulsification characteristic of glucose solution emulsified heavy fuel oil," Energy, Elsevier, vol. 244(PB).
    17. Zhang, Yu & Huang, Ronghua & Chen, Xi & Qin, Tian & Huang, Sheng & Zhou, Pei & Lou, Chun, 2019. "Experimental study on auto-ignition characteristics of a butanol-hexadecane droplet under elevated pressures and temperatures," Energy, Elsevier, vol. 171(C), pages 654-665.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:205:y:2020:i:c:s0360544220311385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.