IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v196y2020ics0360544220301432.html
   My bibliography  Save this article

Ignition and combustion characteristics of single gas-atomized Al–Mg alloy particles in oxidizing gas flow

Author

Listed:
  • Feng, Yunchao
  • Ma, Likun
  • Xia, Zhixun
  • Huang, Liya
  • Yang, Dali

Abstract

Ignition and combustion characteristics of single gas-atomized Al–Mg alloy particles (Al:Mg = 1:1, 20–210 μm) have been studied in the context of improving the ignition and combustion performance of metal additives in composite solid propellants. In this study, a series of experimental conditions with different oxygen contents and temperatures was designed to examine their effects on the ignition and combustion times of single-alloy particles. The particle sizes, ignition delay times, combustion times, and total times of single-alloy particles were measured synchronously using a two-camera system. Experimental results indicate that the time parameters of single-alloy particles are linearly increased with particle diameters in each experimental condition. Blocked by the oxide film, the alloy particles have a relatively long ignition delay time when they are ignited in high-oxygen-content environments. However, the combustion time of alloy particles decreases as the environmental oxygen content increases. High ambient temperature can remarkably shorten the ignition delay time and total time, but its influence on the combustion time is limited. Microexplosion is also monitored during the ignition and combustion processes. Because of this phenomenon, the combustion times and total times of alloy particles are much shorter than those of same-sized aluminum particles.

Suggested Citation

  • Feng, Yunchao & Ma, Likun & Xia, Zhixun & Huang, Liya & Yang, Dali, 2020. "Ignition and combustion characteristics of single gas-atomized Al–Mg alloy particles in oxidizing gas flow," Energy, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301432
    DOI: 10.1016/j.energy.2020.117036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220301432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.117036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Yunchao & Xia, Zhixun & Huang, Liya & Ma, Likun, 2018. "Effect of ambient temperature on the ignition and combustion process of single aluminium particles," Energy, Elsevier, vol. 162(C), pages 618-629.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsai, Yun-Ting & Yang, Yi & Pan, Yong & Shu, Chi-Min, 2023. "Catalytic effects of magnesium-transition metal (Fe and Ni) hydrides on oxygen and nitrogen reduction: A case study of explosive characteristics and their environmental contaminants," Energy, Elsevier, vol. 280(C).
    2. Shi, Wei & Sun, Yunlan & Zhu, Baozhong & Liu, Jianzhong, 2021. "Sodium fluoroaluminate promoting the combustion of micron-sized aluminum powder with different particle sizes in carbon dioxide," Energy, Elsevier, vol. 226(C).
    3. Vershinina, Kseniya & Shevyrev, Sergei & Strizhak, Pavel, 2021. "Coal and petroleum-derived components for high-moisture fuel slurries," Energy, Elsevier, vol. 219(C).
    4. Zhang, Jiarui & Xia, Zhixun & Ma, Likun & Huang, Liya & Feng, Yunchao & Yang, Dali, 2021. "Experimental study on aluminum particles combustion in a turbulent jet," Energy, Elsevier, vol. 214(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zandie, Mohammad & Ng, Hoon Kiat & Gan, Suyin & Muhamad Said, Mohd Farid & Cheng, Xinwei, 2022. "A comprehensive CFD study of the spray combustion, soot formation and emissions of ternary mixtures of diesel, biodiesel and gasoline under compression ignition engine-relevant conditions," Energy, Elsevier, vol. 260(C).
    2. Liang, Daolun & Ren, Ke & Wu, Zizhan & Jiang, Yangxu & Shen, Dekui & Li, Heping & Liu, Jianzhong, 2021. "Combustion characteristics of oxygenated slurry droplets of nano-Al/EtOH and nano-Al/TPGME blends," Energy, Elsevier, vol. 220(C).
    3. Sicong Xi & Hongyan Li & Kai Ma & Yingying Lu & Wenxiong Xi, 2023. "Study on the Transformation of Combustion Mechanism and Ejection Phenomenon of Aluminum Particles in Methane Flame," Energies, MDPI, vol. 16(10), pages 1-14, May.
    4. Zhang, Jiarui & Xia, Zhixun & Ma, Likun & Huang, Liya & Feng, Yunchao & Yang, Dali, 2021. "Experimental study on aluminum particles combustion in a turbulent jet," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:196:y:2020:i:c:s0360544220301432. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.