IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i3p603-d486714.html
   My bibliography  Save this article

A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy

Author

Listed:
  • Ji-Won Lee

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

  • Mun-Kyeom Kim

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

  • Hyung-Joon Kim

    (Department of Energy System Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea)

Abstract

Owing to the increases of energy loads and penetration of renewable energy with variability, it is essential to determine the optimum capacity of the battery energy storage system (BESS) and demand response (DR) within the microgrid (MG). To accomplish the foregoing, this paper proposes an optimal MG operation approach with a hybrid method considering the game theory for a multi-agent system. The hybrid method operation includes both BESS and DR methods. The former is presented to reduce the sum of the MG operation and BESS costs using the game theory, resulting in the optimal capacity of BESS. Similarly, the DR method determines the optimal DR capacity based on the trade-off between the incentive value and capacity. To improve optimization operation, multi-agent guiding particle swarm optimization (MAG-PSO) is implemented by adjusting the best global position and position vector. The results demonstrate that the proposed approach not only affords the most economical decision among agents but also reduces the utilization cost by approximately 8.5%, compared with the base method. Furthermore, it has been revealed that the proposed MAG-PSO algorithm has superiority in terms of solution quality and computational time with respect to other algorithms. Therefore, the optimal hybrid method operation obtains a superior solution with the game theory strategy.

Suggested Citation

  • Ji-Won Lee & Mun-Kyeom Kim & Hyung-Joon Kim, 2021. "A Multi-Agent Based Optimization Model for Microgrid Operation with Hybrid Method Using Game Theory Strategy," Energies, MDPI, vol. 14(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:603-:d:486714
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/3/603/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/3/603/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Md Alamgir Hossain & Hemanshu Roy Pota & Walid Issa & Md Jahangir Hossain, 2017. "Overview of AC Microgrid Controls with Inverter-Interfaced Generations," Energies, MDPI, vol. 10(9), pages 1-27, August.
    2. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Abdou, Ahmed Fathi, 2019. "Modified PSO algorithm for real-time energy management in grid-connected microgrids," Renewable Energy, Elsevier, vol. 136(C), pages 746-757.
    3. Zhang, Xiongwen & Tan, Siew-Chong & Li, Guojun & Li, Jun & Feng, Zhenping, 2013. "Components sizing of hybrid energy systems via the optimization of power dispatch simulations," Energy, Elsevier, vol. 52(C), pages 165-172.
    4. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    5. Jicheng Liu & Fangqiu Xu & Shuaishuai Lin & Hua Cai & Suli Yan, 2018. "A Multi-Agent-Based Optimization Model for Microgrid Operation Using Dynamic Guiding Chaotic Search Particle Swarm Optimization," Energies, MDPI, vol. 11(12), pages 1-22, November.
    6. Hyung-Joon Kim & Mun-Kyeom Kim, 2019. "Multi-Objective Based Optimal Energy Management of Grid-Connected Microgrid Considering Advanced Demand Response," Energies, MDPI, vol. 12(21), pages 1-28, October.
    7. Sukumar, Shivashankar & Mokhlis, Hazlie & Mekhilef, Saad & Naidu, Kanendra & Karimi, Mazaher, 2017. "Mix-mode energy management strategy and battery sizing for economic operation of grid-tied microgrid," Energy, Elsevier, vol. 118(C), pages 1322-1333.
    8. Ho-Young Kim & Mun-Kyeom Kim & San Kim, 2017. "Multi-Objective Scheduling Optimization Based on a Modified Non-Dominated Sorting Genetic Algorithm-II in Voltage Source Converter−Multi-Terminal High Voltage DC Grid-Connected Offshore Wind Farms wit," Energies, MDPI, vol. 10(7), pages 1-21, July.
    9. Aqdas Naz & Nadeem Javaid & Muhammad Babar Rasheed & Abdul Haseeb & Musaed Alhussein & Khursheed Aurangzeb, 2019. "Game Theoretical Energy Management with Storage Capacity Optimization and Photo-Voltaic Cell Generated Power Forecasting in Micro Grid," Sustainability, MDPI, vol. 11(10), pages 1-22, May.
    10. Matthias Pilz & Omar Ellabban & Luluwah Al-Fagih, 2019. "On Optimal Battery Sizing for Households Participating in Demand-Side Management Schemes," Energies, MDPI, vol. 12(18), pages 1-12, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woon-Gyu Lee & Thai-Thanh Nguyen & Hak-Man Kim, 2022. "Multiagent-Based Distributed Coordination of Inverter-Based Resources for Optimal Operation of Microgrids Considering Communication Failures," Energies, MDPI, vol. 15(10), pages 1-19, May.
    2. Helder Pereira & Bruno Ribeiro & Luis Gomes & Zita Vale, 2022. "Smart Grid Ecosystem Modeling Using a Novel Framework for Heterogenous Agent Communities," Sustainability, MDPI, vol. 14(23), pages 1-20, November.
    3. Alla Ndiaye & Fabrice Locment & Alexandre De Bernardinis & Manuela Sechilariu & Eduardo Redondo-Iglesias, 2022. "A Techno-Economic Analysis of Energy Storage Components of Microgrids for Improving Energy Management Strategies," Energies, MDPI, vol. 15(4), pages 1-15, February.
    4. Edward Smith & Duane Robinson & Ashish Agalgaonkar, 2021. "Cooperative Control of Microgrids: A Review of Theoretical Frameworks, Applications and Recent Developments," Energies, MDPI, vol. 14(23), pages 1-34, December.
    5. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    2. Ahmad Alzahrani & Senthil Kumar Ramu & Gunapriya Devarajan & Indragandhi Vairavasundaram & Subramaniyaswamy Vairavasundaram, 2022. "A Review on Hydrogen-Based Hybrid Microgrid System: Topologies for Hydrogen Energy Storage, Integration, and Energy Management with Solar and Wind Energy," Energies, MDPI, vol. 15(21), pages 1-32, October.
    3. Li, Shenglin & Zhu, Jizhong & Chen, Ziyu & Luo, Tengyan, 2021. "Double-layer energy management system based on energy sharing cloud for virtual residential microgrid," Applied Energy, Elsevier, vol. 282(PA).
    4. de la Hoz, Jordi & Martín, Helena & Alonso, Alex & Carolina Luna, Adriana & Matas, José & Vasquez, Juan C. & Guerrero, Josep M., 2019. "Regulatory-framework-embedded energy management system for microgrids: The case study of the Spanish self-consumption scheme," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    5. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    6. Hossain, Md Alamgir & Pota, Hemanshu Roy & Squartini, Stefano & Zaman, Forhad & Guerrero, Josep M., 2019. "Energy scheduling of community microgrid with battery cost using particle swarm optimisation," Applied Energy, Elsevier, vol. 254(C).
    7. Ssadik Charadi & Houssam Eddine Chakir & Abdelbari Redouane & Abdennebi El Hasnaoui & Brahim El Bhiri, 2023. "A Novel Hybrid Imperialist Competitive Algorithm–Particle Swarm Optimization Metaheuristic Optimization Algorithm for Cost-Effective Energy Management in Multi-Source Residential Microgrids," Energies, MDPI, vol. 16(19), pages 1-16, September.
    8. Md Mainul Islam & Mahmood Nagrial & Jamal Rizk & Ali Hellany, 2021. "General Aspects, Islanding Detection, and Energy Management in Microgrids: A Review," Sustainability, MDPI, vol. 13(16), pages 1-45, August.
    9. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    10. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    11. Tayab, Usman Bashir & Lu, Junwei & Yang, Fuwen & AlGarni, Tahani Saad & Kashif, Muhammad, 2021. "Energy management system for microgrids using weighted salp swarm algorithm and hybrid forecasting approach," Renewable Energy, Elsevier, vol. 180(C), pages 467-481.
    12. Sadaqat Ali & Zhixue Zheng & Michel Aillerie & Jean-Paul Sawicki & Marie-Cécile Péra & Daniel Hissel, 2021. "A Review of DC Microgrid Energy Management Systems Dedicated to Residential Applications," Energies, MDPI, vol. 14(14), pages 1-26, July.
    13. Solanke, Tirupati U. & Khatua, Pradeep K. & Ramachandaramurthy, Vigna K. & Yong, Jia Ying & Tan, Kang Miao, 2021. "Control and management of a multilevel electric vehicles infrastructure integrated with distributed resources: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    14. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.
    15. Md Shafiullah & Akib Mostabe Refat & Md Ershadul Haque & Dewan Mabrur Hasan Chowdhury & Md Sanower Hossain & Abdullah G. Alharbi & Md Shafiul Alam & Amjad Ali & Shorab Hossain, 2022. "Review of Recent Developments in Microgrid Energy Management Strategies," Sustainability, MDPI, vol. 14(22), pages 1-30, November.
    16. Abdellatif Elmouatamid & Radouane Ouladsine & Mohamed Bakhouya & Najib El Kamoun & Mohammed Khaidar & Khalid Zine-Dine, 2020. "Review of Control and Energy Management Approaches in Micro-Grid Systems," Energies, MDPI, vol. 14(1), pages 1-30, December.
    17. Md Shafiul Alam & Mohammad Ali Yousef Abido & Ibrahim El-Amin, 2018. "Fault Current Limiters in Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(5), pages 1-24, April.
    18. Ariel Villalón & Carlos Muñoz & Javier Muñoz & Marco Rivera, 2023. "Fixed-Switching-Frequency Modulated Model Predictive Control for Islanded AC Microgrid Applications," Mathematics, MDPI, vol. 11(3), pages 1-27, January.
    19. Ahmadi, Seyed Ehsan & Sadeghi, Delnia & Marzband, Mousa & Abusorrah, Abdullah & Sedraoui, Khaled, 2022. "Decentralized bi-level stochastic optimization approach for multi-agent multi-energy networked micro-grids with multi-energy storage technologies," Energy, Elsevier, vol. 245(C).
    20. Ovidiu Ivanov & Samiran Chattopadhyay & Soumya Banerjee & Bogdan-Constantin Neagu & Gheorghe Grigoras & Mihai Gavrilas, 2020. "A Novel Algorithm with Multiple Consumer Demand Response Priorities in Residential Unbalanced LV Electricity Distribution Networks," Mathematics, MDPI, vol. 8(8), pages 1-24, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:3:p:603-:d:486714. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.