IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v242y2019icp351-363.html
   My bibliography  Save this article

Optimizing the management of smart home energy resources under different power cost scenarios

Author

Listed:
  • Gonçalves, Ivo
  • Gomes, Álvaro
  • Henggeler Antunes, Carlos

Abstract

The management of demand-side resources is increasingly becoming an important issue in face of higher shares of renewable generation and the evolution to smart homes and grids. In a smart home an Automated Home Energy Management System (AHEMS) endowed with adequate algorithms should allow for an integrated optimization of the available energy resources (grid, loads, local generation and storage) in face of time-differentiated tariffs. This paper defines a novel and comprehensive smart home modeling that includes several relevant categories of energy resources as well as a set of practical comfort specifications that the user may freely decide upon. An AHEMS capable of computing compromise solutions by balancing the minimization of total cost (energy and power) and dissatisfaction caused to the users (e.g., by rescheduling load operation) is studied under this novel smart home modeling. Emphasis is given to the study of different power cost scenarios and how they affect the solutions found by the AHEMS. Two types of power cost scenarios are studied: contracted power with known fixed costs and limits on the power requested from the grid, and variable power charges according to the peak power requested from the grid. A detailed analysis of the physical characteristics of the solutions is also provided. Overall, the results show that the variable power charges scenarios surpass the contracted power scenarios in terms of cost and dissatisfaction. Besides incurring in lower power costs, the variable power charges scenarios also obtain lower energy costs. The variable power charges scenarios also provide the users with a greater flexibility over the energy resources, while removing the risk of energy supply interruptions that is present in the contracted power scenarios. In terms of grid management, the results show that the variable power charges scenarios do not present any particular risk of incurring in very high peaks of power requests. In terms of energy policy considerations and given the transition to smart homes and grids, these results suggest that contracted power scenarios may be phased out and safely replaced by variable power charges scenarios with the deployment of AHEMS. Furthermore, the feasibility of deploying the AHEMS under study in a low-cost embedded system is also assessed. The results show that this AHEMS can compute interesting and diverse solutions for practical implementation in less than 90 s.

Suggested Citation

  • Gonçalves, Ivo & Gomes, Álvaro & Henggeler Antunes, Carlos, 2019. "Optimizing the management of smart home energy resources under different power cost scenarios," Applied Energy, Elsevier, vol. 242(C), pages 351-363.
  • Handle: RePEc:eee:appene:v:242:y:2019:i:c:p:351-363
    DOI: 10.1016/j.apenergy.2019.03.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919305161
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.03.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hovgaard, Tobias Gybel & Larsen, Lars F.S. & Edlund, Kristian & Jørgensen, John Bagterp, 2012. "Model predictive control technologies for efficient and flexible power consumption in refrigeration systems," Energy, Elsevier, vol. 44(1), pages 105-116.
    2. Hajibandeh, Neda & Shafie-khah, Miadreza & Osório, Gerardo J. & Aghaei, Jamshid & Catalão, João P.S., 2018. "A heuristic multi-objective multi-criteria demand response planning in a system with high penetration of wind power generators," Applied Energy, Elsevier, vol. 212(C), pages 721-732.
    3. Gomes, A. & Antunes, C. Henggeler & Martinho, J., 2013. "A physically-based model for simulating inverter type air conditioners/heat pumps," Energy, Elsevier, vol. 50(C), pages 110-119.
    4. Biegel, Benjamin & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Value of flexible consumption in the electricity markets," Energy, Elsevier, vol. 66(C), pages 354-362.
    5. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reis, Inês F.G. & Gonçalves, Ivo & Lopes, Marta A.R. & Antunes, Carlos Henggeler, 2020. "A multi-agent system approach to exploit demand-side flexibility in an energy community," Utilities Policy, Elsevier, vol. 67(C).
    2. Roth, Lucas & Lowitzsch, Jens & Yildiz, Özgür & Hashani, Alban, 2016. "The impact of (co-) ownership of renewable energy production facilities on demand flexibility," MPRA Paper 73562, University Library of Munich, Germany.
    3. Inês F. G. Reis & Ivo Gonçalves & Marta A. R. Lopes & Carlos Henggeler Antunes, 2021. "Assessing the Influence of Different Goals in Energy Communities’ Self-Sufficiency—An Optimized Multiagent Approach," Energies, MDPI, vol. 14(4), pages 1-32, February.
    4. Reis, Inês F.G. & Gonçalves, Ivo & Lopes, Marta A.R. & Antunes, Carlos Henggeler, 2022. "Towards inclusive community-based energy markets: A multiagent framework," Applied Energy, Elsevier, vol. 307(C).
    5. Jia, Kunqi & Guo, Ge & Xiao, Jucheng & Zhou, Huan & Wang, Zhihua & He, Guangyu, 2019. "Data compression approach for the home energy management system," Applied Energy, Elsevier, vol. 247(C), pages 643-656.
    6. Biegel, Benjamin & Westenholz, Mikkel & Hansen, Lars Henrik & Stoustrup, Jakob & Andersen, Palle & Harbo, Silas, 2014. "Integration of flexible consumers in the ancillary service markets," Energy, Elsevier, vol. 67(C), pages 479-489.
    7. Sun, Kai & Tseng, Chen-Ting & Shan-Hill Wong, David & Shieh, Shyan-Shu & Jang, Shi-Shang & Kang, Jia-Lin & Hsieh, Wei-Dong, 2015. "Model predictive control for improving waste heat recovery in coke dry quenching processes," Energy, Elsevier, vol. 80(C), pages 275-283.
    8. Roos, Aleksandra & Bolkesjø, Torjus Folsland, 2018. "Value of demand flexibility on spot and reserve electricity markets in future power system with increased shares of variable renewable energy," Energy, Elsevier, vol. 144(C), pages 207-217.
    9. Carreiro, Andreia M. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2017. "Energy management systems aggregators: A literature survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1160-1172.
    10. Liang, Zheming & Bian, Desong & Zhang, Xiaohu & Shi, Di & Diao, Ruisheng & Wang, Zhiwei, 2019. "Optimal energy management for commercial buildings considering comprehensive comfort levels in a retail electricity market," Applied Energy, Elsevier, vol. 236(C), pages 916-926.
    11. Jelena Lukić & Miloš Radenković & Marijana Despotović-Zrakić & Aleksandra Labus & Zorica Bogdanović, 2017. "Supply chain intelligence for electricity markets: A smart grid perspective," Information Systems Frontiers, Springer, vol. 19(1), pages 91-107, February.
    12. Quanhui Che & Suhua Lou & Yaowu Wu & Xiangcheng Zhang & Xuebin Wang, 2019. "Optimal Scheduling of a Multi-Energy Power System with Multiple Flexible Resources and Large-Scale Wind Power," Energies, MDPI, vol. 12(18), pages 1-14, September.
    13. Katz, Jonas & Andersen, Frits Møller & Morthorst, Poul Erik, 2016. "Load-shift incentives for household demand response: Evaluation of hourly dynamic pricing and rebate schemes in a wind-based electricity system," Energy, Elsevier, vol. 115(P3), pages 1602-1616.
    14. Wen, Lulu & Zhou, Kaile & Yang, Shanlin & Li, Lanlan, 2018. "Compression of smart meter big data: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 59-69.
    15. Ana García-Garre & Antonio Gabaldón & Carlos Álvarez-Bel & María Del Carmen Ruiz-Abellón & Antonio Guillamón, 2018. "Integration of Demand Response and Photovoltaic Resources in Residential Segments," Sustainability, MDPI, vol. 10(9), pages 1-31, August.
    16. Su, Huai & Chi, Lixun & Zio, Enrico & Li, Zhenlin & Fan, Lin & Yang, Zhe & Liu, Zhe & Zhang, Jinjun, 2021. "An integrated, systematic data-driven supply-demand side management method for smart integrated energy systems," Energy, Elsevier, vol. 235(C).
    17. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    18. Xie, Jiantong & Pan, Yiqun & Jia, Wenqi & Xu, Lei & Huang, Zhizhong, 2019. "Energy-consumption simulation of a distributed air-conditioning system integrated with occupant behavior," Applied Energy, Elsevier, vol. 256(C).
    19. Wu, Yunna & Xu, Chuanbo & Ke, Yiming & Li, Xinying & Li, Lingwenying, 2019. "Portfolio selection of distributed energy generation projects considering uncertainty and project interaction under different enterprise strategic scenarios," Applied Energy, Elsevier, vol. 236(C), pages 444-464.
    20. Neda Hajibandeh & Miadreza Shafie-khah & Sobhan Badakhshan & Jamshid Aghaei & Sílvio J. P. S. Mariano & João P. S. Catalão, 2019. "Multi-Objective Market Clearing Model with an Autonomous Demand Response Scheme," Energies, MDPI, vol. 12(7), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:242:y:2019:i:c:p:351-363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.