IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v210y2020ics0360544220316856.html
   My bibliography  Save this article

The calculation of solar energy used by hot water systems in permafrost region: An experimental case study for Yakutia

Author

Listed:
  • Tsvetkov, Nikolay Aleksandrovich
  • Krivoshein, Ujriy Olegovich
  • Tolstykh, Aleksandr Vital’yevich
  • Khutornoi, Andrey Nikolaevich
  • Boldyryev, Stanislav

Abstract

This paper presents a mathematical model for the collection and efficient use of solar energy in hot water systems at permafrost regions. A case study was presented for northern territories of the Russian Federation in the Republic of Sakha (Yakutia). Daily maximum diffuse solar radiation on a horizontal and inclined surface was predicted during the year taking into account cloud coverage. The cloud coverage data was taken from the results of five-year monitoring on the heliometric station of the Yakutsk city. The modelling of the hourly, daily, monthly, and annual amount of solar radiation was performed. The mathematical model was turned and finally proved by experimental data obtained from the testing rig. The modelling of the domestic hot water supply system of particular northern territories was performed using solar energy and energy storage. Both models were integrated and verified by experimental data accounting a seasonal fluctuation. The estimation of the solar energy potential for practical application in Yakutia was executed. The operating features of permafrost regions were analysed by the developed experimental unit. The application of solenoid valve reduces the heat losses during the night by 57% in June and by 69% in November. The case study provides the results of modelling and efficient use of solar energy for different daily water flow rates during January and June. The results of the case study show the possibility to use of solar energy in a hybrid energy system at permafrost regions, decarbonize the energy input and contribute regional sustainability of northern territories.

Suggested Citation

  • Tsvetkov, Nikolay Aleksandrovich & Krivoshein, Ujriy Olegovich & Tolstykh, Aleksandr Vital’yevich & Khutornoi, Andrey Nikolaevich & Boldyryev, Stanislav, 2020. "The calculation of solar energy used by hot water systems in permafrost region: An experimental case study for Yakutia," Energy, Elsevier, vol. 210(C).
  • Handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316856
    DOI: 10.1016/j.energy.2020.118577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220316856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maraj, Altin & Londo, Andonaq & Gebremedhin, Alemayehu & Firat, Coskun, 2019. "Energy performance analysis of a forced circulation solar water heating system equipped with a heat pipe evacuated tube collector under the Mediterranean climate conditions," Renewable Energy, Elsevier, vol. 140(C), pages 874-883.
    2. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    3. Raptis, P.I. & Kazadzis, S. & Psiloglou, B. & Kouremeti, N. & Kosmopoulos, P. & Kazantzidis, A., 2017. "Measurements and model simulations of solar radiation at tilted planes, towards the maximization of energy capture," Energy, Elsevier, vol. 130(C), pages 570-580.
    4. Erdemir, Dogan & Atesoglu, Hakan & Altuntop, Necdet, 2019. "Experimental investigation on enhancement of thermal performance with obstacle placing in the horizontal hot water tank used in solar domestic hot water system," Renewable Energy, Elsevier, vol. 138(C), pages 187-197.
    5. Reed, A.L. & Novelli, A.P. & Doran, K.L. & Ge, S. & Lu, N. & McCartney, J.S., 2018. "Solar district heating with underground thermal energy storage: Pathways to commercial viability in North America," Renewable Energy, Elsevier, vol. 126(C), pages 1-13.
    6. Ziar, Hesan & Sönmez, Furkan Fatih & Isabella, Olindo & Zeman, Miro, 2019. "A comprehensive albedo model for solar energy applications: Geometric spectral albedo," Applied Energy, Elsevier, vol. 255(C).
    7. Allouhi, A. & Benzakour Amine, M. & Buker, M.S. & Kousksou, T. & Jamil, A., 2019. "Forced-circulation solar water heating system using heat pipe-flat plate collectors: Energy and exergy analysis," Energy, Elsevier, vol. 180(C), pages 429-443.
    8. Pomianowski, M.Z. & Johra, H. & Marszal-Pomianowska, A. & Zhang, C., 2020. "Sustainable and energy-efficient domestic hot water systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guanjun & Qin, Hui & Shen, Qin & Lyv, Hao & Qu, Yuhua & Fu, Jialong & Liu, Yongqi & Zhou, Jianzhong, 2021. "Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network," Applied Energy, Elsevier, vol. 300(C).
    2. Nikolay Tsvetkov & Stanislav Boldyryev & Aleksandr Shilin & Yuriy Krivoshein & Aleksandr Tolstykh, 2022. "Hardware and Software Implementation for Solar Hot Water System in Northern Regions of Russia," Energies, MDPI, vol. 15(4), pages 1-18, February.
    3. Enrique A. Enríquez-Velásquez & Victor H. Benitez & Sergey G. Obukhov & Luis C. Félix-Herrán & Jorge de-J. Lozoya-Santos, 2020. "Estimation of Solar Resource Based on Meteorological and Geographical Data: Sonora State in Northwestern Territory of Mexico as Case Study," Energies, MDPI, vol. 13(24), pages 1-41, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Malec & Tomasz Cholewa & Alicja Siuta-Olcha, 2021. "Influence of Cold Water Inlets and Obstacles on the Energy Efficiency of the Hot Water Production Process in a Hot Water Storage Tank," Energies, MDPI, vol. 14(20), pages 1-26, October.
    2. Li, Hong & Liu, Hongyuan & Li, Min, 2022. "Review on heat pipe based solar collectors: Classifications, performance evaluation and optimization, and effectiveness improvements," Energy, Elsevier, vol. 244(PA).
    3. Łukasz Amanowicz, 2021. "Peak Power of Heat Source for Domestic Hot Water Preparation (DHW) for Residential Estate in Poland as a Representative Case Study for the Climate of Central Europe," Energies, MDPI, vol. 14(23), pages 1-15, December.
    4. Jiwen Cen & Feng Li & Tingliang Li & Wenbo Huang & Juanwen Chen & Fangming Jiang, 2021. "Experimental Study of the Heat-Transfer Performance of an Extra-Long Gravity-Assisted Heat Pipe Aiming at Geothermal Heat Exploitation," Sustainability, MDPI, vol. 13(22), pages 1-16, November.
    5. Chen, Yuzhu & Hua, Huilian & Wang, Jun & Lund, Peter D., 2021. "Integrated performance analysis of a space heating system assisted by photovoltaic/thermal collectors and ground source heat pump for hotel and office building types," Renewable Energy, Elsevier, vol. 169(C), pages 925-934.
    6. María Gasque & Federico Ibáñez & Pablo González-Altozano, 2021. "Minimum Number of Experimental Data for the Thermal Characterization of a Hot Water Storage Tank," Energies, MDPI, vol. 14(16), pages 1-16, August.
    7. Re Cecconi, F. & Moretti, N. & Tagliabue, L.C., 2019. "Application of artificial neutral network and geographic information system to evaluate retrofit potential in public school buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 266-277.
    8. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    9. Milousi, Maria & Souliotis, Manolis, 2023. "A circular economy approach to residential solar thermal systems," Renewable Energy, Elsevier, vol. 207(C), pages 242-252.
    10. Koo, Choongwan & Hong, Taehoon & Jeong, Kwangbok & Ban, Cheolwoo & Oh, Jeongyoon, 2017. "Development of the smart photovoltaic system blind and its impact on net-zero energy solar buildings using technical-economic-political analyses," Energy, Elsevier, vol. 124(C), pages 382-396.
    11. Gönül, Ömer & Yazar, Fatih & Duman, A. Can & Güler, Önder, 2022. "A comparative techno-economic assessment of manually adjustable tilt mechanisms and automatic solar trackers for behind-the-meter PV applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    12. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    13. Yu, Haiquan & Zhou, Jianxin & Si, Fengqi & Nord, Lars O., 2022. "Combined heat and power dynamic economic dispatch considering field operational characteristics of natural gas combined cycle plants," Energy, Elsevier, vol. 244(PA).
    14. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    15. Jeong, Kwangbok & Hong, Taehoon & Kim, Jimin & Cho, Kyuman, 2019. "Development of a multi-objective optimization model for determining the optimal CO2 emissions reduction strategies for a multi-family housing complex," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 118-131.
    16. Ganjehkaviri, A. & Mohd Jaafar, M.N. & Hosseini, S.E. & Barzegaravval, H., 2017. "Genetic algorithm for optimization of energy systems: Solution uniqueness, accuracy, Pareto convergence and dimension reduction," Energy, Elsevier, vol. 119(C), pages 167-177.
    17. Eva-Maria Grommes & Ulf Blieske & Jean-Régis Hadji-Minaglou, 2023. "Positive Impact of Red Soil on Albedo and the Annual Yield of Bifacial Photovoltaic Systems in Ghana," Energies, MDPI, vol. 16(4), pages 1-12, February.
    18. Căruțașiu Mihail-Bogdan & Ionescu Constantin & Necula Horia, 2017. "Optimal technical and economic strategy for retrofitting residential buildings in Romania," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 11(1), pages 146-156, July.
    19. Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
    20. Park, Hyo Seon & Koo, Choongwan & Hong, Taehoon & Oh, Jeongyoon & Jeong, Kwangbok, 2016. "A finite element model for estimating the techno-economic performance of the building-integrated photovoltaic blind," Applied Energy, Elsevier, vol. 179(C), pages 211-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:210:y:2020:i:c:s0360544220316856. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.